cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094737 Number of connected 5-element multiantichains on a labeled n-set.

This page as a plain text file.
%I A094737 #13 Oct 08 2017 18:38:46
%S A094737 0,1,1,19,387,12796,588332,30409555,1510137553,68451901642,
%T A094737 2839832714238,109655179461961,4007814663515939,140559147215148208,
%U A094737 4779718456846032064,158823449312897655487,5186933187595033751445
%N A094737 Number of connected 5-element multiantichains on a labeled n-set.
%H A094737 G. C. Greubel, <a href="/A094737/b094737.txt">Table of n, a(n) for n = 0..670</a>
%F A094737 E.g.f.: (1/5!)*(exp(31*x) -20*exp(23*x) +60*exp(19*x) +20*exp(17*x) +5*exp(16*x) -85*exp(15*x) -120*exp(14*x) +150*exp(13*x) +180*exp(12*x) -540*exp(11*x) -110*exp(10*x) +860*exp(9*x) +160*exp(8*x) -735*exp(7*x) +1110*exp(6*x) -2106*exp(5*x) -1095*exp(4*x) +6665*exp(3*x) -7090*exp(2*x) +3434*exp(x)-744).
%F A094737 a(n) = (3434 - 1095*4^n + 5*16^n - 3545*2^(n+1) + 5*2^(3n+5) + 6665*3^n + 860*9^n + 5*4^(n+1)*3^(n+2) - 2106*5^n - 17*3^n*5^(n+1) + 185*6^(n+1) - 15*2^(n+3)*7^n - 15*7^(n+2) - 11*10^(n+1) - 540*11^n + 150*13^n + 20*17^n + 60*19^n - 20*23^n + 31^n)/120, n>0. - _Benedict W. J. Irwin_, May 25 2016
%t A094737 Table[ (3434 - 1095*4^n + 5*16^n - 3545*2^(n + 1) + 5*2^(3 n + 5) + 6665*3^n + 860*9^n + 5*4^(n + 1)*3^(n + 2) - 2106*5^n - 17*3^n*5^(n + 1) + 185*6^(n + 1) - 15*2^(n + 3)*7^n - 15*7^(n + 2) - 11*10^(n + 1) - 540*11^n + 150*13^n + 20*17^n + 60*19^n - 20*23^n + 31^n)/120 (1 - UnitStep[-n]), {n, 0, 20}] (* _Benedict W. J. Irwin_, May 25 2016 *)
%Y A094737 Cf. A094033-A094037, A094729-A094738.
%K A094737 nonn
%O A094737 0,4
%A A094737 Goran Kilibarda, _Vladeta Jovovic_, May 24 2004