A094744 Rearrangement of primes so that sum of the absolute value of the successive differences is also a prime.
2, 5, 3, 11, 7, 13, 19, 17, 23, 29, 47, 37, 67, 31, 43, 41, 53, 71, 59, 89, 61, 73, 79, 103, 83, 101, 107, 97, 109, 139, 127, 157, 131, 137, 113, 149, 167, 151, 163, 181, 193, 173, 197, 179, 191, 227, 251, 211, 277, 229, 271, 223, 307, 239, 263, 199, 241, 283, 257
Offset: 1
Keywords
Examples
5-2 = 3 is prime, (5-2)+ (5-3) = 5 is a prime,(5-2)+(5-3)+(11-3) = 13 is a prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10000: # to use primes up to N A[1]:= 2: P:= select(isprime, [seq(i,i=3..N,2)]): s:= 0: for n from 2 do for i from 1 to nops(P) do if isprime(s + abs(P[i]-A[n-1])) then s:= s+abs(P[i]-A[n-1]); A[n]:= P[i]; P:= subsop(i=NULL,P); break fi od; if not assigned(A[n]) then break fi; od: seq(A[i],i=1..n-1); # Robert Israel, Sep 16 2016
Extensions
Corrected and extended by Franklin T. Adams-Watters, Oct 09 2006
Comments