This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094756 #19 Dec 19 2018 15:05:23 %S A094756 2,4,2,7,2,4,2,7,2,4,2,16,2,4,2,7,2,4,2,7,2,4,2,16,2,4,2,7,2,4,2,7,2, %T A094756 4,2,16,2,4,2,7,2,4,2,7,2,4,2,22,2,4,2,7,2,4,2,7,2,4,2,16,2,4,2,7,2,4, %U A094756 2,7,2,4,2,16,2,4,2,7,2,4,2,7,2,4,2,16,2,4,2,7,2,4,2,7,2,4,2,22,2,4,2,7,2,4 %N A094756 a(n) = least k>1 such that (1+2+3+...+k) divides (1^n + 2^n + 3^n + ... + k^n). %H A094756 Antti Karttunen, <a href="/A094756/b094756.txt">Table of n, a(n) for n = 1..20000</a> %H A094756 Antti Karttunen, <a href="/A094756/a094756.txt">Data supplement: n, a(n) computed for n = 1..100000</a> %F A094756 Formulae from _Don Reble_: If N is not divisible by 2, a(N) = 2. %F A094756 Otherwise, if N is not divisible by 4, a(N) = 4. %F A094756 Otherwise, if N is not divisible by 12, a(N) = 7. %F A094756 Otherwise, if N is not divisible by 48, a(N) = 16. %F A094756 Otherwise, if N is not divisible by 240, a(N) = 22 or 31. (31 if N is divisible by 528=11*48; otherwise 22). %F A094756 Otherwise, if N is not divisible by 720, a(N) = 37. %F A094756 Otherwise, if N is not divisible by 11 nor 23, a(N) = 46. %F A094756 Otherwise, if N is not divisible by 77, a(N) = 58. %F A094756 Otherwise, if N is not divisible by 13 nor 53, a(N) = 106. %F A094756 Otherwise, if N is not divisible by 13, a(N) = 157. %F A094756 Otherwise, if N is not divisible by 41 nor 83, a(N) = 166. ... %F A094756 That works for N < 29549520 or so. But it is unlikely that any finite description of that kind is complete. %t A094756 f[n_] := Block[{k = 2}, While[ !IntegerQ[ 2Sum[i^n, {i, k}]/(k(k + 1))], k++ ]; k]; Table[ f[n], {n, 50}] (* _Robert G. Wilson v_, Jun 02 2004 *) %o A094756 (PARI) A094756(n) = { my(k=1,s1=1,s2=1); while(1, k++; s1 += k; s2 += (k^n); if(!(s2%s1), return(k))); }; \\ _Antti Karttunen_, Dec 19 2018 %Y A094756 Cf. A094755, A095366. %K A094756 nonn %O A094756 1,1 %A A094756 _Amarnath Murthy_, May 29 2004 %E A094756 Edited and extended by _Don Reble_ and _Robert G. Wilson v_, Jun 02 2004