This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094776 #26 Feb 13 2023 19:05:18 %S A094776 86,91,168,153,107,71,93,71,78,108 %N A094776 a(n) = largest k such that the decimal representation of 2^k does not contain the digit n. %C A094776 These values are only conjectural. %C A094776 The sequence could be extended to any nonnegative integer index n defining a(n) to be the largest k such that n does not appear as substring in the decimal expansion of 2^k. I conjecture that for n = 10, 11, 12, ... it continues (2000, 3020, 1942, 1465, 1859, 2507, 1950, 1849, 1850, ...). For example, curiously enough, the largest power of 2 in which the string "10" does not appear seems to be 2^2000. - _M. F. Hasler_, Feb 10 2023 %D A094776 J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 71, p. 25, Ellipses, Paris 2008. %H A094776 Tanya Khovanova, <a href="https://blog.tanyakhovanova.com/2011/02/86-conjecture/">86 Conjecture</a>, T. K.'s Math Blog, Feb. 15, 2011. %H A094776 Popular Computing (Calabasas, CA), <a href="/A094776/a094776.jpg">Two Tables</a>, Vol. 1, (No. 9, Dec 1973), page PC9-16. %e A094776 a(0) = 86 because 2^86 = 77371252455336267181195264 is conjectured to be the highest power of 2 that doesn't contain the digit 0. %t A094776 f[n_] := Block[{a = {}, k = 1}, While[k < 10000, If[ Position[ Union[ IntegerDigits[ 2^k, 10]], n] == {}, AppendTo[a, k]]; k++ ]; a]; Table[ f[n][[ -1]], {n, 0, 9}] (* _Robert G. Wilson v_, Jun 12 2004 *) %o A094776 (PARI) A094776(n,L=10*20^#Str(n))={forstep(k=L, 0, -1, foreach(digits(1<<k), d, d==n&&next(2)); return(k))} \\ _M. F. Hasler_, Feb 13 2023 %o A094776 (Python) %o A094776 def A094776(n, L=0): %o A094776 n = str(n) %o A094776 for k in range(L if L else 10*20**len(n), 0, -1): %o A094776 if n not in str(2**k): return k # _M. F. Hasler_, Feb 13 2023 %Y A094776 Cf. A259081 - A259083. %Y A094776 Cf. A027870 and A065712 - A065744 (number of '0's, ..., '9's in 2^n). %Y A094776 Cf. A034293 (numbers k such that 2^k has no '2'). %K A094776 nonn,fini,full,base %O A094776 0,1 %A A094776 _Michael Taktikos_, Jun 09 2004