cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094779 Let 2^k = smallest power of 2 >= binomial(n,[n/2]); a(n) = 2^k - binomial(n,[n/2]).

This page as a plain text file.
%I A094779 #6 Jun 25 2015 06:41:29
%S A094779 0,0,0,1,2,6,12,29,58,2,4,50,100,332,664,1757,3514,8458,16916,38694,
%T A094779 77388,171572,343144,745074,1490148,3188308,6376616,13496132,26992264,
%U A094779 56658968,113317936,236330717,472661434,980680538,1961361076,4052366942,8104733884
%N A094779 Let 2^k = smallest power of 2 >= binomial(n,[n/2]); a(n) = 2^k - binomial(n,[n/2]).
%C A094779 Suggested by reading the Knuth article.
%C A094779 a(n+1) < a(n) for n = 8, 40, 162, 650... - _Ivan Neretin_, Jun 25 2015
%D A094779 D. E. Knuth, Efficient balanced codes, IEEE Trans. Inform. Theory, 32 (No. 1, 1986), 51-53.
%H A094779 Ivan Neretin, <a href="/A094779/b094779.txt">Table of n, a(n) for n = 0..1000</a>
%e A094779 C(30,15) = 155117520; 2^28 = 268435456; difference is 113317936.
%t A094779 Table[-(b = Binomial[n, Quotient[n, 2]]) + 2^Ceiling[Log2[b]], {n, 0, 36}] (* _Ivan Neretin_, Jun 25 2015 *)
%Y A094779 Cf. A093387, A094780.
%K A094779 nonn
%O A094779 0,5
%A A094779 _N. J. A. Sloane_, Jun 10 2004