cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094781 Array T(i,j), i>=1, j >= 1, forming a two-dimensional version of A090822, read by antidiagonals.

This page as a plain text file.
%I A094781 #10 Aug 02 2014 06:17:48
%S A094781 1,1,1,2,1,2,1,2,2,1,1,1,2,1,1,2,1,3,3,1,2,2,2,2,1,2,2,2,2,2,2,1,1,2,
%T A094781 2,2,3,2,2,3,1,3,2,2,3,1,3,3,3,2,2,3,3,3,1,1,1,2,2,2,1,2,2,2,1,1,2,1,
%U A094781 2,1,2,1,1,2,1,2,1,2,1,2,2,1,3,2,1,2,3,1,2,2,1
%N A094781 Array T(i,j), i>=1, j >= 1, forming a two-dimensional version of A090822, read by antidiagonals.
%C A094781 T(1,i) = T(i,1) = A090822(i). For i and j > 1, T(i,j) = max {k1, k2}, where k1 = curling number of (T(i,1), T(i,2)...,T(i,j-1)), k2 = curling number of (T(1,j), T(2,j)...,T(i-1,j)).
%C A094781 The curling number of a finite string S = (s(1),...,s(n)) is the largest integer k such that S can be written as xy^k for strings x and y (where y has positive length).
%H A094781 F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">A Slow-Growing Sequence Defined by an Unusual Recurrence</a>, J. Integer Sequences, Vol. 10 (2007), #07.1.2.
%H A094781 F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [<a href="http://neilsloane.com/doc/gijs.pdf">pdf</a>, <a href="http://neilsloane.com/doc/gijs.ps">ps</a>].
%H A094781 <a href="/index/Ge#Gijswijt">Index entries for sequences related to Gijswijt's sequence</a>
%e A094781 Array begins:
%e A094781 1 1 2 1 1 2 2 2 3 1 1 2 1 1 2 2 2 3 2 1 ... (A090822)
%e A094781 1 1 2 1 1 2 2 2 3 1 1 2 1 1 2 2 2 3 2 1 ... (A090822)
%e A094781 2 2 2 3 2 2 2 3 2 2 2 3 3 2 ... (A091787)
%e A094781 1 1 3 1 1 3 3 2 1 1 2 1 1 2 ... (A094782)
%e A094781 1 1 2 1 1 2 2 2 3 1 2 1 1 2 ... (A094839)
%e A094781 2 2 2 3 2 1 1 2 1 2 3 2 2 3 ...
%e A094781 2 2 2 3 2 1 1 3 1 2 ...
%Y A094781 Cf. A090822, A091787, A094782.
%K A094781 nonn,tabl
%O A094781 1,4
%A A094781 _N. J. A. Sloane_, Jun 12 2004