cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094791 Triangle read by rows giving coefficients of polynomials arising in successive differences of (n!)_{n>=0}.

This page as a plain text file.
%I A094791 #33 Aug 14 2021 15:33:34
%S A094791 1,1,0,1,1,1,1,3,5,2,1,6,17,20,9,1,10,45,100,109,44,1,15,100,355,694,
%T A094791 689,265,1,21,196,1015,3094,5453,5053,1854,1,28,350,2492,10899,29596,
%U A094791 48082,42048,14833,1,36,582,5460,32403,124908,309602,470328,391641,133496
%N A094791 Triangle read by rows giving coefficients of polynomials arising in successive differences of (n!)_{n>=0}.
%C A094791 Let D_0(n)=n! and D_{k+1}(n)=D_{k}(n+1)-D_{k}(n), then D_{k}(n)=n!*P_{k}(n) where P_{k} is a polynomial with integer coefficients of degree k.
%C A094791 The horizontal reversal of this triangle arises as a binomial convolution of the derangements coefficients der(n,i) (numbers of permutations of size n with i derangements = A098825(n,i) = number of permutations of size n with n-i rencontres = A008290(n,n-i), see formula section). - _Olivier Gérard_, Jul 31 2011
%F A094791 T(n, n) = A000166(n).
%F A094791 T(2, k) = A000217(k).
%F A094791 Sum_{k=0..n} T(n,n-k)*x^k = Sum_{i=0..n} der(n,i)*binomial( n+x, i) (an analog of Worpitzky's identity). - _Olivier Gérard_, Jul 31 2011
%F A094791 The n-th row polynomial R(n,x) = Sum _{k = 0..n} T(n,k)*x^k is P-recursive in the variable x: x*R(n,x) = (x+n+1)*R(n,x-1) - R(n,x-2). - _Peter Bala_, Jul 25 2021
%e A094791 D_3(n) = n!*(n^3 + 3*n^2 + 5*n + 2).
%e A094791 D_4(n) = n!*(n^4 + 6*n^3 + 17*n^2 + 20*n + 9).
%e A094791 Table begins:
%e A094791   1
%e A094791   1  0
%e A094791   1  1   1
%e A094791   1  3   5   2
%e A094791   1  6  17  20    9
%e A094791   1 10  45 100  109   44
%e A094791   1 15 100 355  694  689  265
%e A094791   ...
%p A094791 with(LREtools): A094791_row := proc(n)
%p A094791 delta(x!,x,n); simplify(%/x!); seq(coeff(%,x,n-j),j=0..n) end:
%p A094791 seq(print(A094791_row(n)),n=0..9); # _Peter Luschny_, Jan 09 2015
%t A094791 d[0][n_] := n!; d[k_][n_] := d[k][n] = d[k - 1][n + 1] - d[k - 1][n] // FullSimplify;
%t A094791 row[k_] := d[k][n]/n! // FullSimplify // CoefficientList[#, n]& // Reverse;
%t A094791 Array[row, 10, 0] // Flatten (* _Jean-François Alcover_, Aug 02 2019 *)
%Y A094791 Successive differences of factorial numbers: A001563, A001564, A001565, A001688, A001689, A023043.
%Y A094791 Rencontres numbers A008290. Partial derangements A098825.
%Y A094791 Row sum is A000255. Signed version in A126353.
%Y A094791 Cf. A094792, A094793, A094794, A094795.
%K A094791 nonn,tabl
%O A094791 0,8
%A A094791 _Benoit Cloitre_, Jun 11 2004
%E A094791 Edited and T(0,0) corrected according to the author's definition by _Olivier Gérard_, Jul 31 2011