This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094796 #28 Apr 01 2024 13:02:22 %S A094796 1,3,1,9,15,6,27,108,135,42,81,594,1539,1530,456,243,2835,12555,25245, %T A094796 22122,6120,729,12393,83835,281475,482436,383292,101520,2187,51030, %U A094796 489888,2466450,6916833,10546200,7786692,1980720 %N A094796 Triangle read by rows giving coefficients of polynomials arising in successive differences of central binomial numbers. %C A094796 Let D_0(n)=binomial(2*n,n) and D_{k+1}(n)=D_{k}(n+1)-D_{k}(n); then D_{k}(n)*(n+1)*(n+2)*...*(n+k) = binomial(2*n,n)*P_{k}(n) where P_{k} is a polynomial with integer coefficients of degree k. %F A094796 T(n,0) = 3^n. T(n,1) = A027472(n+2) + 6*A027472(n+1). T(n,2) = 3*(2*A036217(n-2) + 15*A036217(n-3) + 18*A036217(n-4)). - _R. J. Mathar_, Nov 19 2019 %e A094796 The third differences of the central binomial numbers are given by D_3(n) = binomial(2*n,n)*(n+1)*(n+2)*(n+3)*(27*n^3 + 108*n^2 + 135*n + 42) and the fourth row of the triangle is 27, 108, 135, 42. %e A094796 From _M. F. Hasler_, Nov 15 2019: (Start) %e A094796 The table reads: %e A094796 n | row(n) %e A094796 0 | 1 %e A094796 1 | 3 1 %e A094796 2 | 9 15 6 %e A094796 3 | 27 108 135 42 %e A094796 4 | 81 594 1539 1530 456 %e A094796 5 | 243 2835 12555 25245 22122 6120 %e A094796 6 | 729 12393 83835 281475 482436 383292 101520 %e A094796 7 | 2187 51030 489888 2466450 6916833 10546200 7786692 1980720 %e A094796 8 | 6561 201204 2602530 18329976 75981969 186899076 260520300 181218384 44634240 %e A094796 (End) %p A094796 Dnk := proc(n,k) %p A094796 option remember; %p A094796 if k < 0 then %p A094796 0 ; %p A094796 elif k = 0 then %p A094796 binomial(2*n,n) ; %p A094796 else %p A094796 procname(n+1,k-1)-procname(n,k-1) ; %p A094796 end if; %p A094796 end proc: %p A094796 A094796 := proc(n,k) %p A094796 local xyvec,i,x ; %p A094796 xyvec := [] ; %p A094796 for i from 0 to n do %p A094796 xyvec := [op(xyvec),[i,Dnk(i,n)*mul(i+j,j=1..n)/Dnk(i,0)]] ; %p A094796 end do: %p A094796 CurveFitting[PolynomialInterpolation](xyvec,x) ; %p A094796 coeff(%,x,n-k) ; %p A094796 end proc: # _R. J. Mathar_, Nov 19 2019 %t A094796 Dnk[n_, k_] := Dnk[n, k] = Which[k < 0, 0, k == 0, Binomial[2*n, n], True, Dnk[n + 1, k - 1] - Dnk[n, k - 1]]; %t A094796 T[n_, k_] := Module[{xyvec, i, x , ip}, xyvec = {}; For[i = 0, i <= n, i++, AppendTo[xyvec, {i, Dnk[i, n]*Product[i + j, {j, 1, n}]/Dnk[i, 0]}]]; ip = InterpolatingPolynomial[xyvec, x]; Coefficient[ip, x, n - k]]; %t A094796 Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Apr 01 2024, after _R. J. Mathar_ *) %o A094796 (PARI) apply( {A094796_row(n,D(n,k)=if(k,D(n+1,k-1)-D(n,k-1),binomial(2*n,n)))=Vec(polinterpolate([0..n],vector(n+1,k,D(k--,n)*(n+k)!/k!/binomial(2*k,k))))}, [0..8]) \\ _M. F. Hasler_, Nov 15 2019 %Y A094796 Cf. A000984 (central binomial coefficients), A163771 (square array of central binomial coefficients and higher differences), A000244 (column k=0). %Y A094796 Main diagonal gives A098461. %K A094796 nonn,tabl %O A094796 0,2 %A A094796 _Benoit Cloitre_, Jun 11 2004 %E A094796 Corrected and edited by _M. F. Hasler_, following observations by _R. J. Mathar_ and _Don Reble_, Nov 15 2019 %E A094796 More terms from _Don Reble_, Nov 15 2019