cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094796 Triangle read by rows giving coefficients of polynomials arising in successive differences of central binomial numbers.

This page as a plain text file.
%I A094796 #28 Apr 01 2024 13:02:22
%S A094796 1,3,1,9,15,6,27,108,135,42,81,594,1539,1530,456,243,2835,12555,25245,
%T A094796 22122,6120,729,12393,83835,281475,482436,383292,101520,2187,51030,
%U A094796 489888,2466450,6916833,10546200,7786692,1980720
%N A094796 Triangle read by rows giving coefficients of polynomials arising in successive differences of central binomial numbers.
%C A094796 Let D_0(n)=binomial(2*n,n) and D_{k+1}(n)=D_{k}(n+1)-D_{k}(n); then D_{k}(n)*(n+1)*(n+2)*...*(n+k) = binomial(2*n,n)*P_{k}(n) where P_{k} is a polynomial with integer coefficients of degree k.
%F A094796 T(n,0) = 3^n. T(n,1) = A027472(n+2) + 6*A027472(n+1). T(n,2) = 3*(2*A036217(n-2) + 15*A036217(n-3) + 18*A036217(n-4)). - _R. J. Mathar_, Nov 19 2019
%e A094796 The third differences of the central binomial numbers are given by D_3(n) = binomial(2*n,n)*(n+1)*(n+2)*(n+3)*(27*n^3 + 108*n^2 + 135*n + 42) and the fourth row of the triangle is 27, 108, 135, 42.
%e A094796 From _M. F. Hasler_, Nov 15 2019: (Start)
%e A094796 The table reads:
%e A094796   n  |  row(n)
%e A094796   0  |    1
%e A094796   1  |    3      1
%e A094796   2  |    9     15       6
%e A094796   3  |   27    108     135       42
%e A094796   4  |   81    594    1539     1530      456
%e A094796   5  |  243   2835   12555    25245    22122      6120
%e A094796   6  |  729  12393   83835   281475   482436    383292    101520
%e A094796   7  | 2187  51030  489888  2466450  6916833  10546200   7786692   1980720
%e A094796   8  | 6561 201204 2602530 18329976 75981969 186899076 260520300 181218384 44634240
%e A094796 (End)
%p A094796 Dnk := proc(n,k)
%p A094796     option remember;
%p A094796     if k < 0 then
%p A094796         0 ;
%p A094796     elif k = 0 then
%p A094796         binomial(2*n,n) ;
%p A094796     else
%p A094796         procname(n+1,k-1)-procname(n,k-1) ;
%p A094796     end if;
%p A094796 end proc:
%p A094796 A094796 := proc(n,k)
%p A094796     local xyvec,i,x ;
%p A094796     xyvec := [] ;
%p A094796     for i from 0 to n do
%p A094796         xyvec := [op(xyvec),[i,Dnk(i,n)*mul(i+j,j=1..n)/Dnk(i,0)]] ;
%p A094796     end do:
%p A094796     CurveFitting[PolynomialInterpolation](xyvec,x) ;
%p A094796     coeff(%,x,n-k) ;
%p A094796 end proc: # _R. J. Mathar_, Nov 19 2019
%t A094796 Dnk[n_, k_] := Dnk[n, k] = Which[k < 0, 0, k == 0, Binomial[2*n, n], True, Dnk[n + 1, k - 1] - Dnk[n, k - 1]];
%t A094796 T[n_, k_] := Module[{xyvec, i, x , ip}, xyvec = {}; For[i = 0, i <= n, i++, AppendTo[xyvec, {i, Dnk[i, n]*Product[i + j, {j, 1, n}]/Dnk[i, 0]}]]; ip = InterpolatingPolynomial[xyvec, x]; Coefficient[ip, x, n - k]];
%t A094796 Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Apr 01 2024, after _R. J. Mathar_ *)
%o A094796 (PARI) apply( {A094796_row(n,D(n,k)=if(k,D(n+1,k-1)-D(n,k-1),binomial(2*n,n)))=Vec(polinterpolate([0..n],vector(n+1,k,D(k--,n)*(n+k)!/k!/binomial(2*k,k))))}, [0..8]) \\ _M. F. Hasler_, Nov 15 2019
%Y A094796 Cf. A000984 (central binomial coefficients), A163771 (square array of central binomial coefficients and higher differences), A000244 (column k=0).
%Y A094796 Main diagonal gives A098461.
%K A094796 nonn,tabl
%O A094796 0,2
%A A094796 _Benoit Cloitre_, Jun 11 2004
%E A094796 Corrected and edited by _M. F. Hasler_, following observations by _R. J. Mathar_ and _Don Reble_, Nov 15 2019
%E A094796 More terms from _Don Reble_, Nov 15 2019