A094804 Number of primes in the trajectory of n under the juggler map of A094683.
0, 0, 1, 4, 1, 3, 1, 2, 1, 2, 4, 2, 4, 2, 4, 2, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 3, 2, 3, 5, 3, 3, 3, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 1, 3, 1, 4, 2, 3, 2, 3, 2, 2, 2, 1, 2, 4, 2, 3, 2, 1, 1, 1, 1, 6, 1, 4, 1, 2, 1, 3, 1, 1, 1, 3, 1, 4, 1, 1, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 5, 2, 2, 2, 4, 2, 1, 4, 3, 4, 2, 4
Offset: 0
Examples
3 -> 5 -> 11 -> 36 -> 6 -> 2 -> 1, so in this trajectory 3, 5, 11 and 2 are primes, hence a(3) = 4.
Programs
-
Mathematica
Table[Count[NestWhileList[If[EvenQ[#],Floor[Sqrt[#]],Floor[(Sqrt[#])^3]]&,n,#>1&],?PrimeQ],{n,0,120}] (* _Harvey P. Dale, Sep 26 2021 *)