cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A216236 Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=4 or if k-n>=5, T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 0, 0, 5, 10, 10, 4, 0, 0, 5, 15, 20, 14, 0, 0, 0, 0, 20, 35, 34, 14, 0, 0, 0, 0, 20, 55, 69, 48, 0, 0, 0, 0, 0, 0, 75, 124, 117, 48, 0, 0, 0, 0, 0, 0, 75, 199, 241, 165, 0, 0, 0, 0, 0, 0, 0, 0, 274, 440, 406, 165, 0, 0, 0, 0, 0, 0, 0, 0, 274, 714, 846, 571, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 14 2013

Keywords

Comments

Arithmetic hexagon of E. Lucas.

Examples

			Square array begins:
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ...
1, 2, 3, 4, 5, 5, 0, 0, 0, 0, 0, ...
1, 3, 6, 10, 15, 20, 20, 0, 0, 0, ...
1, 4, 10, 20, 35, 55, 75, 75, 0, 0, 0, ...
0, 4, 14, 34, 69, 124, 199, 274, 274, 0, 0, ...
0, 0, 14, 48, 117, 241, 440, 714, 988, 988, 0, ...
...
		

References

  • E. Lucas, Théorie des nombres, Albert Blanchard, Paris, 1958, Tome 1, p. 89

Crossrefs

Formula

T(n+3,n) = T(n+2,n) = A094827(n).
T(n+1,n) = A094832(n).
T(n,n) = A094854(n).
T(n,n+1) = A094855(n).
T(n,n+2) = A094833(n+1).
T(n,n+3) = T(n,n+4) = A094828(n).
Sum( T(n-k,k), 0<=k<=n ) = A217733(n). - Philippe Deléham, Mar 22 2013

A217315 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 1 or if k-n >= 8, T(0,k)= 1 if 0<=k<=7, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 1, 5, 9, 5, 0, 0, 0, 1, 6, 14, 14, 0, 0, 0, 0, 0, 7, 20, 28, 14, 0, 0, 0, 0, 0, 7, 27, 48, 42, 0, 0, 0, 0, 0, 0, 0, 34, 75, 90, 42, 0, 0, 0, 0, 0, 0, 0, 34, 109, 165, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 143, 274, 297, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 143, 417, 571, 429, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 17 2013

Keywords

Comments

A hexagon arithmetic of E. Lucas.

Examples

			Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ... row n=0
0, 1, 2, 3, 4, 5, 6, 7, 7, 0, 0, 0, 0, 0, 0, ... row n=1
0, 0, 2, 5, 9, 14, 20, 27, 34, 34, 0, 0, 0, ... row n=2
0, 0, 0, 5, 14, 28, 48, 75, 109, 143, 143, 0, 0, ... row n=3
0, 0, 0, 0, 14, 42, 90, 165, 274, 417, 560, 560, 0, ... row n=4
0, 0, 0, 0, 0, 42, 132, 297, 571, 988, 1548, 2108, 2108, 0, ... row n=5
...
		

Crossrefs

Cf. Similar sequence: A216230, A216228, A216226, A216238, A216054, A217257.

Programs

  • Mathematica
    t[0, k_ /; k <= 7] = 1; t[n_, k_] /; k < n || k > n+7 = 0; t[n_, k_] := t[n, k] = t[n-1, k] + t[n, k-1]; Table[t[n-k, k], {n, 0, 13}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 18 2013 *)

Formula

T(n,n) = A080938(n).
T(n,n+1) = A080938(n+1).
T(n,n+2) = A094826(n+1).
T(n,n+3) = A094827(n+1).
T(n,n+4) = A094828(n+2).
T(n,n+5) = A094829(n+2).
T(n,n+6) = T(n,n+7) = A094256(n+1).
Sum_{k, 0<=k<=n} T(n-k,k) = A061551(n).
Showing 1-2 of 2 results.