cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A094833 Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 9 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 3, s(2n) = 5.

Original entry on oeis.org

1, 4, 15, 55, 199, 714, 2548, 9061, 32148, 113887, 403051, 1425471, 5039254, 17809336, 62928201, 222324436, 785402143, 2774421135, 9800231959, 34617003682, 122274355596, 431893332397, 1525507797700, 5388281150223
Offset: 1

Views

Author

Herbert Kociemba, Jun 13 2004

Keywords

Comments

In general, a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n) counts (s(0), s(1), ..., s(2n)) such that 0 < s(i) < m and |s(i)-s(i-1)| = 1 for i = 1,2,...,2n, s(0) = j, s(2n) = k.

Programs

  • Mathematica
    Rest@ CoefficientList[Series[(-x + 2 x^2)/(-1 + 6 x - 9 x^2 + x^3), {x, 0, 24}], x] (* Michael De Vlieger, Jul 02 2021 *)

Formula

a(n) = (2/9)*Sum_{r=1..8} sin(r*Pi/3)*sin(5*r*Pi/9)*(2*cos(r*Pi/9))^(2n).
a(n) = 6a(n-1) - 9a(n-2) + a(n-3).
G.f.: (-x+2x^2)/(-1 + 6x - 9x^2 + x^3).
a(n+1) = 3*a(n) + A094832(n-1). - Philippe Deléham, Mar 20 2007
a(n) = A094829(n+1) - 2*A094829(n). - R. J. Mathar, Nov 14 2019

A216236 Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=4 or if k-n>=5, T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 0, 0, 5, 10, 10, 4, 0, 0, 5, 15, 20, 14, 0, 0, 0, 0, 20, 35, 34, 14, 0, 0, 0, 0, 20, 55, 69, 48, 0, 0, 0, 0, 0, 0, 75, 124, 117, 48, 0, 0, 0, 0, 0, 0, 75, 199, 241, 165, 0, 0, 0, 0, 0, 0, 0, 0, 274, 440, 406, 165, 0, 0, 0, 0, 0, 0, 0, 0, 274, 714, 846, 571, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 14 2013

Keywords

Comments

Arithmetic hexagon of E. Lucas.

Examples

			Square array begins:
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ...
1, 2, 3, 4, 5, 5, 0, 0, 0, 0, 0, ...
1, 3, 6, 10, 15, 20, 20, 0, 0, 0, ...
1, 4, 10, 20, 35, 55, 75, 75, 0, 0, 0, ...
0, 4, 14, 34, 69, 124, 199, 274, 274, 0, 0, ...
0, 0, 14, 48, 117, 241, 440, 714, 988, 988, 0, ...
...
		

References

  • E. Lucas, Théorie des nombres, Albert Blanchard, Paris, 1958, Tome 1, p. 89

Crossrefs

Formula

T(n+3,n) = T(n+2,n) = A094827(n).
T(n+1,n) = A094832(n).
T(n,n) = A094854(n).
T(n,n+1) = A094855(n).
T(n,n+2) = A094833(n+1).
T(n,n+3) = T(n,n+4) = A094828(n).
Sum( T(n-k,k), 0<=k<=n ) = A217733(n). - Philippe Deléham, Mar 22 2013

A217765 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >=3 or if k-n >= 6, T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 0, 1, 4, 6, 3, 0, 1, 5, 10, 9, 0, 0, 0, 6, 15, 19, 9, 0, 0, 0, 6, 21, 34, 28, 0, 0, 0, 0, 0, 27, 55, 62, 28, 0, 0, 0, 0, 0, 27, 82, 117, 90, 0, 0, 0, 0, 0, 0, 0, 109, 199, 207, 90, 0, 0, 0, 0, 0, 0, 0, 109, 308, 406, 297, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 24 2013

Keywords

Comments

A hexagon arithmetic of E. Lucas.

Examples

			Square array begins:
1, 1, 1, 1, 1, 1, 0, 0, 0, ... row n=0
1, 2, 3, 4, 5, 6, 6, 0, 0, ... row n=1
1, 3, 6, 10, 15, 21, 27, 27, 0, 0, ... row n=2
0, 3, 9, 19, 34, 55, 82, 109, 109, 0, 0, ... row n=3
0, 0, 9, 28, 62, 117, 199, 308, 417, 417, 0, 0, ... row n=4
0, 0, 0, 28, 90, 207, 406, 714, 1131, 1548, 1548, 0, 0, ... row n=5
...
Square array, read by rows, with 0 omitted:
1, 1, 1, 1, 1, 1
1, 2, 3, 4, 5, 6, 6
1, 3, 6, 10, 15, 21, 27, 27
3, 9, 19, 34, 55, 82, 109, 109
9, 28, 62, 117, 199, 308, 417, 417
28, 90, 207, 406, 714, 1131, 1548, 1548
90, 297, 703, 1417, 2548, 4096, 5644, 5644
297, 1000, 2417, 4965, 9061, 14705, 20349, 20349
1000, 3417, 8382, 17443, 32148, 52497, 72846, 72846
3417, 11799, 29242, 61390, 113887, 186733, 259579, 259579
11799, 41041, 102431, 216318, 403051, 662630, 922209, 922209
...
		

Crossrefs

Cf. Similar sequences: A216201, A216210, A216216, A216218, ...

Formula

T(n,n+4) = T(n,n+5) = A094829(n+2).
T(n,n+3) = A094834(n+1).
T(n,n+2) = A094833(n+1).
T(n,n+1) = A094832(n).
T(n,n) = A094831(n).
T(n+1,n) = T(n+2,n) = A094826(n).
sum(T(n-k,k), 0<=k<=n) = A065455(n).

A188022 Expansion of x*(1+x) / (1-3*x^2-x^3).

Original entry on oeis.org

0, 1, 1, 3, 4, 10, 15, 34, 55, 117, 199, 406, 714, 1417, 2548, 4965, 9061, 17443, 32148, 61390, 113887, 216318, 403051, 762841, 1425471, 2691574, 5039254, 9500193, 17809336, 33539833, 62928201, 118428835, 222324436, 418214706, 785402143, 1476968554
Offset: 0

Views

Author

L. Edson Jeffery, Mar 18 2011

Keywords

Comments

Define the 4 X 4 tridiagonal unit-primitive matrix (see [Jeffery]) M=A_{9,1}=[0,1,0,0; 1,0,1,0; 0,1,0,1; 0,0,1,1]; then a(n)=[M^n](3,4)=[M^n](4,3).

Crossrefs

Cf. A094832 (bisection), A094833 (bisection).

Programs

  • Mathematica
    LinearRecurrence[{0, 3, 1}, {0, 1, 1}, 36] (* or *)
    CoefficientList[Series[x (1 + x)/(1 - 3 x^2 - x^3), {x, 0, 35}], x] (* Michael De Vlieger, Mar 10 2020 *)

Formula

a(n) = 3*a(n-2)+a(n-3).
a(n) = A187498(3*n+1).
a(n) = A052931(n-2)+A052931(n-1). - R. J. Mathar, Mar 22 2011
Showing 1-4 of 4 results.