A094854 Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 9 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 4, s(2n) = 4.
1, 2, 6, 20, 69, 241, 846, 2977, 10490, 36994, 130532, 460737, 1626629, 5743674, 20283121, 71632290, 252989326, 893528468, 3155899165, 11146628105, 39370204614, 139057473905, 491159630010, 1734810719530, 6127485120996
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1825
- Index entries for linear recurrences with constant coefficients, signature (7,-15,10,-1).
Programs
-
Maple
with(GraphTheory): G:=PathGraph(8): A:= AdjacencyMatrix(G): nmax:=24; for n from 0 to 2*nmax+2 do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..8); od: seq(a(2*n),n=0..nmax); # Johannes W. Meijer, May 29 2010
-
Mathematica
CoefficientList[Series[-(2 x - 1) (x^2 - 3 x + 1)/((x - 1) (x^3 - 9 x^2 + 6 x - 1)), {x, 0, 24}], x] (* Michael De Vlieger, Feb 12 2022 *)
Formula
a(n) = (2/9)*Sum_{r=1..8} sin(4*r*Pi/9)^2*(2*cos(r*Pi/9))^(2n).
a(n) = 7*a(n-1) - 15*a(n-2) + 10*a(n-3) - a(n-4).
G.f.: -(2*x-1)*(x^2-3*x+1) / ( (x-1)*(x^3-9*x^2+6*x-1) ).
a(n) = A061551(2*n). - Johannes W. Meijer, May 29 2010
Comments