cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094866 Number of truncated ST-pairs O(q^n).

This page as a plain text file.
%I A094866 #16 Feb 27 2024 14:43:35
%S A094866 1,2,4,6,11,15,26,41,67,96,138,197,300,431,636,893,1258,1723,2447,
%T A094866 3425,4962,6839,10000,13989,21383,30781,48292,70456,110214,159686,
%U A094866 253265,374385,591648,876405,1354888
%N A094866 Number of truncated ST-pairs O(q^n).
%C A094866 A truncated ST-pair O(q^n) consists of a subset S of {1, 2, ..., n-1} and a subset T of {1, 2, ..., n-2} such that (Product_{k in S} 1/(1-q^k)) - q (Product_{k in T} 1/(1-q^k)) = 1 + O(q^n). - _Andrey Zabolotskiy_, Feb 27 2024
%D A094866 F. G. Garvan, Shifted and Shiftless Partition Identities, in Number Theory for the Millennium II (M. A. Bennett et al., eds.), AK Peters, Ltd. 2002, pp. 75-92.
%H A094866 F. G. Garvan, <a href="https://qseries.org/fgarvan/publist.html#shifted">Shifted and shiftless partition identities</a> (2001).
%t A094866 st[n_] := Select[Flatten[Table[{s, t}, {s, Subsets@Range[n - 1]}, {t, Subsets@Range[n - 2]}], 1], Normal[Product[1/(1-q^k) + O[q]^n, {k, First@#}] - q Product[1/(1-q^k) + O[q]^n, {k, Last@#}] - 1] == 0 &];
%t A094866 Table[Length@st[n], {n, 3, 9}] (* _Andrey Zabolotskiy_, Feb 27 2024 *)
%K A094866 nonn
%O A094866 3,2
%A A094866 _Barry Cipra_, Jun 15 2004