cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094916 a(1) = 1; for n > 1, a(n) = curling number of (b(1),...,b(n-1)), where b() = Fibonacci word A003849 (with offset changed to 1).

This page as a plain text file.
%I A094916 #12 Aug 02 2014 06:17:48
%S A094916 1,1,1,1,2,1,2,2,2,2,2,2,2,2,3,2,2,2,2,2,2,2,2,3,3,2,2,3,2,2,2,2,2,2,
%T A094916 2,3,2,3,3,3,3,2,2,2,3,3,2,2,3,2,2,2,2,2,2,2,2,3,3,2,3,3,3,3,3,3,3,2,
%U A094916 2,3,2,3,3,3,3,2,2,2,3,3,2,2,3,2,2,2,2,2,2,2,3,2,3,3,3,3,2,3,3,3,3,3,3,3,3
%N A094916 a(1) = 1; for n > 1, a(n) = curling number of (b(1),...,b(n-1)), where b() = Fibonacci word A003849 (with offset changed to 1).
%C A094916 The curling number of a finite string S = (s(1),...,s(n)) is the largest integer k such that S can be written as xy^k for strings x and y (where y has positive length).
%H A094916 F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">A Slow-Growing Sequence Defined by an Unusual Recurrence</a>, J. Integer Sequences, Vol. 10 (2007), #07.1.2.
%H A094916 F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [<a href="http://neilsloane.com/doc/gijs.pdf">pdf</a>, <a href="http://neilsloane.com/doc/gijs.ps">ps</a>].
%H A094916 <a href="/index/Ge#Gijswijt">Index entries for sequences related to Gijswijt's sequence</a>
%e A094916 b(1) to b(12) are 0,1,0,0,1,0,1,0,0,1,0,0, which we can write as xy^2 with x = 0,1,0,0,1,0 and y = 1,0,0; and no greater k is possible, so a(12) = 2.
%Y A094916 Cf. A090822, A003849, A093914, A093921.
%K A094916 nonn,easy
%O A094916 1,5
%A A094916 _N. J. A. Sloane_, Jun 18 2004
%E A094916 More terms from _David Wasserman_, Jul 03 2007