This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094925 #20 May 04 2021 01:06:59 %S A094925 1,1,2,4,7,12,20,34,55,90,148,240,394,638,1043,1688,2750,4450,7232, %T A094925 11736,19002,30827,49884,80856,130978,211982,343348,555964,899706, %U A094925 1456702,2358089,3815834,6176654,9996926,16176330,26180456,42368468,68567892 %N A094925 A hexagonal spiral Fibonacci sequence. %C A094925 Consider the following spiral: %C A094925 . %C A094925 a(6)----a(7)----a(8) %C A094925 / \ %C A094925 / \ %C A094925 / \ %C A094925 a(5) a(1)----a(2) a(9) %C A094925 \ / / %C A094925 \ / / %C A094925 \ / / %C A094925 a(14) a(4)----a(3) a(10) %C A094925 \ / %C A094925 \ / %C A094925 \ / %C A094925 a(13)---a(12)---a(11) %C A094925 . %C A094925 Then a(1)=1, a(n) = a(n-1) + Sum_{a(i) adjacent to a(n-1)} a(i). Here 6 terms around a(m) touch a(m). %H A094925 Manfred Scheucher, <a href="/A094925/b094925.txt">Table of n, a(n) for n = 1..1323</a> %H A094925 N. Fernandez, <a href="http://www.borve.org/primeness/spirofib.html">Spiro-Fibonacci numbers</a> %H A094925 Manfred Scheucher, <a href="/A094925/a094925.sage.txt">Sage Script</a> %F A094925 a(n) ~ c*phi^n with phi=1.61803... being the golden ratio and c = 0.78529667298898361017570049509486675274402985275383398273772345738007479334754... (conjectured). Cf. A094926. - _Manfred Scheucher_, Jun 03 2015 %e A094925 a(2) = a(1) = 1, %e A094925 a(3) = a(1) + a(2) = 2, %e A094925 a(4) = a(1) + a(2) + a(3) = 4, %e A094925 a(5) = a(1) + a(3) + a(4) = 7, %e A094925 a(6) = a(1) + a(4) + a(5) = 12, %e A094925 a(7) = a(1) + a(5) + a(6) = 20, etc. %e A094925 Thus: %e A094925 12----20----34 %e A094925 / \ %e A094925 / \ %e A094925 7 1-----1 55 %e A094925 \ / / %e A094925 \ / / %e A094925 638 4-----2 90 %e A094925 \ / %e A094925 \ / %e A094925 394---240---148 %Y A094925 Cf. A094926, A078510, A079421, A079422. %K A094925 nonn,easy %O A094925 1,3 %A A094925 _Yasutoshi Kohmoto_ %E A094925 a(15)-a(38) from _Nathaniel Johnston_, Apr 26 2011