cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094927 Number of nonisomorphic (possibly decomposable) self-dual quantum codes on n qubits.

This page as a plain text file.
%I A094927 #18 Jul 09 2025 04:23:36
%S A094927 1,2,3,6,11,26,59,182,675,3990,45144,1323363
%N A094927 Number of nonisomorphic (possibly decomposable) self-dual quantum codes on n qubits.
%C A094927 Also number of nonisomorphic (indecomposable or decomposable) self-dual codes of Type 4^H+ and length n.
%D A094927 L. E. Danielsen and M. G. Parker, On the classification of all self-dual additive codes over GF(4) of length up to 12, Preprint 2005.
%H A094927 Lars Eirik Danielsen and Matthew G. Parker, <a href="http://arxiv.org/abs/cs/0504102">Spectral Orbits and Peak-to-Average Power Ratio of Boolean Functions with respect to the {I,H,N}^n Transform</a>, (2005), arxiv:cs/0504102. In Sequences and Their Applications-SETA 2004, Lecture Notes in Computer Science, Volume 3486/2005, Springer-Verlag. [Added by N. J. A. Sloane, Jul 08 2009]
%H A094927 Anatoly Dymarsky and Alfred Shapere, <a href="https://arxiv.org/abs/2009.01244">Quantum stabilizer codes, lattices, and CFTs</a>, arXiv:2009.01244 [hep-th], 2020.
%H A094927 G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
%Y A094927 See A090899 for more information. Cf. also A110302, A110306.
%K A094927 nonn
%O A094927 1,2
%A A094927 Lars Eirik Danielsen (larsed(AT)ii.uib.no) and Matthew G. Parker (matthew(AT)ii.uib.no), Jun 17 2004