This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094928 #13 May 06 2019 09:55:14 %S A094928 3,3,5,3,5,3,3,5,3,7,3,3,5,5,3,3,7,5,3,5,3,3,5,3,7,3,3,5,3,7,3,3,3,3, %T A094928 5,3,3,11,5,3,3,11,5,3,11,3,7,3,5,7,3,3,3,3,7,3,3,7,5,3,3,5,5,11,5,3, %U A094928 3,5,5,3,7,5,3,5,3,7,3,7,3,5,3,3,3,5,11,5,3,5,3,3,13,5,3,3,3,3,5,5,3,5,3,7 %N A094928 Let p = n-th prime == 1 mod 8 (A007519); a(n) = smallest prime q such that p is not a square mod q. %D A094928 M. Kneser, Quadratische Formen, Springer, 2002; see Hilfssatz 18.3. %H A094928 Robert Israel, <a href="/A094928/b094928.txt">Table of n, a(n) for n = 1..10000</a> %F A094928 a(n) = A094929(A269704(n)). - _Robert Israel_, May 06 2019 %e A094928 n=3, p = 73, a(3) = q = 5: Legendre(73,5) = -1. %p A094928 f:= proc(p) local q; %p A094928 q:= 3: %p A094928 do %p A094928 if numtheory:-quadres(p,q) = -1 then return q fi; %p A094928 q:= nextprime(q); %p A094928 od; %p A094928 end proc: %p A094928 map(f, select(isprime, [seq(p,p=1..10000,8)])); # _Robert Israel_, May 06 2019 %t A094928 f[n_] := Prime[ Position[ JacobiSymbol[n, Select[Range[3, n - 1], PrimeQ[ # ] &]], -1][[1, 1]] + 1]; f /@ Select[ Prime[ Range[435]], Mod[ #, 8] == 1 &] (* _Robert G. Wilson v_, Jun 23 2004 *) %Y A094928 Cf. A007519, A002224, A144294, A269704. %Y A094928 Subsequence of A094929. %K A094928 nonn,easy %O A094928 1,1 %A A094928 _N. J. A. Sloane_, Jun 19 2004 %E A094928 More terms from _Robert G. Wilson v_, Jun 23 2004