A094954 Array T(k,n) read by antidiagonals. G.f.: x(1-x)/(1-kx+x^2), k>1.
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 13, 1, 1, 5, 19, 41, 34, 1, 1, 6, 29, 91, 153, 89, 1, 1, 7, 41, 169, 436, 571, 233, 1, 1, 8, 55, 281, 985, 2089, 2131, 610, 1, 1, 9, 71, 433, 1926, 5741, 10009, 7953, 1597, 1, 1, 10, 89, 631, 3409, 13201, 33461, 47956, 29681
Offset: 1
Examples
1,1,1,1,1,1,1,1,1,1,1,1,1,1, ... 1,2,5,13,34,89,233,610,1597, ... 1,3,11,41,153,571,2131,7953, ... 1,4,19,91,436,2089,10009,47956, ... 1,5,29,169,985,5741,33461,195025, ... 1,6,41,281,1926,13201,90481,620166, ...
Links
- Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114.
- Elizabeth Wilmer, A note on Stephan's conjecture 87
- Elizabeth Wilmer, A note on Stephan's conjecture 87 [cached copy]
Crossrefs
Programs
-
Mathematica
max = 14; row[k_] := Rest[ CoefficientList[ Series[ x*(1-x)/(1-k*x+x^2), {x, 0, max}], x]]; t = Table[ row[k], {k, 2, max+1}]; Flatten[ Table[ t[[k-n+1, n]], {k, 1, max}, {n, 1, k}]] (* Jean-François Alcover, Dec 27 2011 *)
-
PARI
T(k,n)=polcoeff(x*(1-x)/(1-k*x+x*x),n)
Formula
Recurrence: T(k, 1) = 1, T(k, 2) = k-1, T(k, n) = kT(k, n-1) - T(k, n-2).
For n>3, T(k, n) = [k(k-2) + T(k, n-1)T(k, n-2)] / T(k, n-3).
T(k, n+1) = S(n, k) - S(n-1, k) = U(n, k/2) - U(n-1, k/2), with S, U = Chebyshev polynomials of second kind.
T(k+2, n+1) = Sum[i=0..n, k^(n-i) * C(2n-i, i)] (from comments by Benoit Cloitre).
Comments