A094964 A continued fraction transformation of Pi.
3, 8, 2, 8, 6, 5, 6, 1, 6, 2, 0, 5, 1, 1, 7, 6, 3, 4, 9, 2, 1, 6, 8, 0, 7, 8, 5, 8, 1, 2, 3, 2, 7, 1, 5, 3, 8, 3, 4, 1, 3, 8, 0, 6, 0, 0, 7, 6, 7, 2, 4, 7, 4, 6, 7, 8, 8, 4, 6, 4, 8, 6, 7, 7, 0, 9, 9, 4, 9, 4, 2, 0, 3, 6, 6, 3, 5, 2, 0, 7, 5, 2, 6, 0, 3, 7, 1, 1, 5, 0, 4, 1, 8, 0, 7, 0, 0, 9, 2, 7, 6, 8, 0, 0, 4
Offset: 1
Examples
C = 3.828656162...
Crossrefs
Cf. A000796.
Programs
-
Mathematica
RealDigits[ FromContinuedFraction[ RealDigits[Pi, 10, 125][[1]]], 10, 111][[1]]
-
PARI
extractDigits(x,{basis=10}) = { local(d); d=[floor(x)]; x = basis*(x - floor(x)); for (i=1,ceil(precision(x)*log(10)/log(basis))+5, d = concat(d, floor(x)); x = basis*(x - floor(x)); ); return(d); } continuedFraction(digs) = { local(rtn,n,first); rtn = 0; for (i=0,#digs-1, n = digs[ #digs - i]; if (n, first = i; rtn = n; break; ); ); for (i=first+1,#digs-1, rtn = digs[ #digs - i] + 1/rtn; ); return(rtn); } \p 1000 continuedFraction(extractDigits(Pi,10))+0. \\ Olivier Favre (of.olivier.favre(AT)gmail.com), Mar 01 2010
Comments