This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095027 #14 Jul 09 2023 09:40:08 %S A095027 65,2059,19171,1586131,1161737179,94134790219,450283768452043891, %T A095027 7509466514977363620705281135650699, %U A095027 2909321189362570189660446183802104997118371,19088056323407826916968161259086927505582748291 %N A095027 Semiprimes of the form 3^n - 2^n. %H A095027 Dario Alpern, <a href="https://www.alpertron.com.ar/ECM.HTM">Factorization using the Elliptic Curve Method</a> %e A095027 a(1)=65 because 3^4-2^4=65=5*13 is a semiprime; a(3)=19171: 3^9-2^9=19171=19*1009. %t A095027 Select[Table[3^n - 2^n, {n, 100}], PrimeOmega[#] == 2&] (* _Vincenzo Librandi_, Sep 21 2012 *) %o A095027 (Magma) IsSemiprime:=func<n | &+[d[2]: d in Factorization(n)] eq 2>; [s: n in [2..100] | IsSemiprime(s) where s is 3^n - 2^n]; // _Vincenzo Librandi_, Sep 21 2012 %Y A095027 Cf. A082869 = n such that 3^n-2^n is a semiprime, A058765 primes of the form 3^n-2^n. %K A095027 nonn %O A095027 1,1 %A A095027 _Hugo Pfoertner_, Jun 03 2004 %E A095027 a(10) from _Vincenzo Librandi_, Sep 21 2012