This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095051 #29 Oct 15 2018 22:19:34 %S A095051 1,0,3,8,69,384,4375,34152,464457,5051456,75865131,1032865800, %T A095051 18108977293,286975230528,5639956035519,105513165321704, %U A095051 2269311347406225,48066460265622912,1146324511845384787,26924271371612501256,701472699537610875861,18214089447110112972800,512194770431254272442983 %N A095051 E.g.f.: exp(-x)/eta(x), where eta(x) is the Dedekind eta function. %H A095051 Vaclav Kotesovec, <a href="/A095051/b095051.txt">Table of n, a(n) for n = 0..440</a> %H A095051 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A095051 Inverse binomial transform of A053529. - _Vladeta Jovovic_, Jun 21 2004 %F A095051 From _Vaclav Kotesovec_, Oct 31 2017: (Start) %F A095051 a(n) ~ exp(-1) * n! * A000041(n). %F A095051 a(n) ~ sqrt(2*Pi) * exp(Pi*sqrt(2*n/3) - n - 1) * n^(n - 1/2) / (4*sqrt(3)). (End) %F A095051 E.g.f.: exp(Sum_{k>=2} sigma(k)*x^k/k). - _Ilya Gutkovskiy_, Oct 15 2018 %t A095051 Table[Sum[(-1)^(n-k) * Binomial[n, k] * k! * PartitionsP[k], {k, 0, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Oct 31 2017 *) %t A095051 nmax = 20; CoefficientList[Series[Exp[-x] * x^(1/24)/DedekindEta[Log[x]/(2*Pi*I)], {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Oct 31 2017 *) %o A095051 (PARI) a(n)=polcoeff(1/eta(x)/exp(x),n)*n! %Y A095051 Cf. A218481, A294466, A281425. %Y A095051 Cf. A266232, A294467, A293467, A294468. %K A095051 nonn %O A095051 0,3 %A A095051 _Benoit Cloitre_, Jun 19 2004 %E A095051 More terms from _Michel Marcus_, Oct 31 2017