This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095071 #27 Nov 28 2024 16:31:23 %S A095071 17,67,73,97,131,137,193,257,263,269,277,281,293,337,353,389,401,449, %T A095071 521,523,547,577,593,641,643,673,769,773,1031,1033,1039,1049,1051, %U A095071 1061,1063,1069,1091,1093,1097,1109,1123,1129,1153,1163,1171 %N A095071 Zero-bit dominant primes, i.e., primes whose binary expansion contains more 0's than 1's. %H A095071 Indranil Ghosh, <a href="/A095071/b095071.txt">Table of n, a(n) for n = 1..20000</a> %H A095071 A. Karttunen and J. Moyer, <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a> %e A095071 73 is in the sequence because 73 is a prime and 73_10 = 1001001_2. '1001001' has four 0's and one 1. - _Indranil Ghosh_, Jan 31 2017 %t A095071 Reap[Do[p=Prime[k];id=IntegerDigits[p,2];n=Length@id;If[Count[id,0]>n/2,Sow[p]],{k,200}]][[2,1]] %t A095071 (* _Zak Seidov_ *) %t A095071 Select[Prime[Range[200]],DigitCount[#,2,0]>DigitCount[#,2,1]&] (* _Harvey P. Dale_, Nov 28 2024 *) %o A095071 (PARI) B(x) = { nB = floor(log(x)/log(2)); b1 = 0; b0 = 0; %o A095071 for(i = 0, nB, if(bittest(x,i), b1++;, b0++;); ); %o A095071 if(b0 > b1, return(1);, return(0););}; %o A095071 forprime(x = 2, 1171, if(B(x), print1(x, ", "); ); ); \\ _Washington Bomfim_, Jan 11 2011 %o A095071 (PARI){forprime(p=2,1171,nB=floor(log(p)/log(2)); %o A095071 sum(i=0,nB,bittest(p,i))<=nB/2&print1(p,","))} \\ _Zak Seidov_, Jan 11 2011 %o A095071 (Python) %o A095071 #Program to generate the b-file %o A095071 from sympy import isprime %o A095071 i=1 %o A095071 j=1 %o A095071 while j<=200: %o A095071 if isprime(i) and bin(i)[2:].count("0")>bin(i)[2:].count("1"): %o A095071 print(str(j)+" "+str(i)) %o A095071 j+=1 %o A095071 i+=1 # _Indranil Ghosh_, Jan 31 2017 %Y A095071 Complement of A095074 in A000040. Subset: A095072. Cf. A095019. %K A095071 nonn,base,easy %O A095071 1,1 %A A095071 _Antti Karttunen_, Jun 01 2004