This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095073 #22 May 01 2021 15:57:41 %S A095073 5,19,71,83,89,101,113,271,283,307,313,331,397,409,419,421,433,457, %T A095073 1103,1117,1181,1223,1229,1237,1303,1307,1319,1381,1427,1429,1433, %U A095073 1481,1489,1559,1579,1607,1613,1619,1621,1637,1699,1733,1811,1861 %N A095073 Primes in whose binary expansion the number of 1-bits is one more than the number of 0-bits. %H A095073 Indranil Ghosh, <a href="/A095073/b095073.txt">Table of n, a(n) for n = 1..25000</a> %H A095073 Antti Karttunen and J. Moyer, <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a> %e A095073 71 is in the sequence because 71_10 = 1000111_2. '1000111' has four 1's and three 0's. - _Indranil Ghosh_, Feb 03 2017 %t A095073 Select[Prime[Range[500]], Differences[DigitCount[#, 2]] == {-1} &] %o A095073 (PARI) %o A095073 { forprime(p=2, 2000, %o A095073 v=binary(p); s=0; %o A095073 for(k=1,#v, s+=if(v[k]==1,+1,-1)); %o A095073 if(s==1,print1(p,", ")) %o A095073 ) } %o A095073 (Python) %o A095073 from sympy import isprime %o A095073 i=1 %o A095073 j=1 %o A095073 while j<=25000: %o A095073 if isprime(i) and bin(i)[2:].count("1")-bin(i)[2:].count("0")==1: %o A095073 print(str(j)+" "+str(i)) %o A095073 j+=1 %o A095073 i+=1 # _Indranil Ghosh_, Feb 03 2017 %Y A095073 Intersection of A000040 and A031448. Subset of A095070. Cf. A095053. %K A095073 nonn,base,easy %O A095073 1,1 %A A095073 _Antti Karttunen_, Jun 01 2004