This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095075 #30 Sep 27 2023 16:50:40 %S A095075 2,17,37,41,67,73,97,131,137,139,149,163,193,197,257,263,269,277,281, %T A095075 293,337,353,389,401,449,521,523,541,547,557,563,569,577,587,593,601, %U A095075 613,617,641,643,647,653,659,661,673,677,709,769,773,787 %N A095075 Primes in whose binary expansion the number of 1-bits is less than or equal to number of 0-bits. %H A095075 Indranil Ghosh, <a href="/A095075/b095075.txt">Table of n, a(n) for n = 1..25000</a> %H A095075 Antti Karttunen and John Moyer, <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a>. %e A095075 From _Indranil Ghosh_, Feb 03 2017: (Start) %e A095075 17 is in the sequence because 17_10 = 10001_2. '10001' has two 1's and three 0's. %e A095075 37 is in the sequence because 37_10 = 100101_2. '100101' has three 1's and 3 0's. (End) %t A095075 Select[Prime[Range[150]], Differences[DigitCount[#, 2]][[1]] >= 0 &] (* _Amiram Eldar_, Jul 25 2023 *) %t A095075 Select[Prime[Range[150]],DigitCount[#,2,1]<=DigitCount[#,2,0]&] (* _Harvey P. Dale_, Sep 27 2023 *) %o A095075 (PARI) B(x) = {nB = floor(log(x)/log(2)); z1 = 0; z0 = 0; %o A095075 for(i = 0, nB, if(bittest(x,i), z1++;, z0++;); ); %o A095075 if(z1 <= z0, return(1);, return(0););}; %o A095075 forprime(x = 2, 787, if(B(x), print1(x, ", "); ); ); %o A095075 \\ _Washington Bomfim_, Jan 11 2011 %o A095075 (Python) %o A095075 from sympy import isprime %o A095075 i=1 %o A095075 j=1 %o A095075 while j<=250: %o A095075 if isprime(i) and bin(i)[2:].count("1")<=bin(i)[2:].count("0"): %o A095075 print(str(j)+" "+str(i)) %o A095075 j+=1 %o A095075 i+=1 # _Indranil Ghosh_, Feb 03 2017 %Y A095075 Complement of A095070 in A000040. %Y A095075 Cf. A095055. %K A095075 nonn,easy,base %O A095075 1,1 %A A095075 _Antti Karttunen_, Jun 01 2004