This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095079 #15 Dec 27 2023 11:58:12 %S A095079 19,43,53,79,103,107,109,367,379,431,439,443,463,487,491,499,751,863, %T A095079 887,983,1013,1279,1471,1531,1663,1759,1783,1787,1789,1951,1979,1999, %U A095079 2011,2027,2029,3067,3581,3823,4027,5119,6079,6911,7039,7103 %N A095079 Primes with two 0-bits in their binary expansion. %H A095079 Alois P. Heinz, <a href="/A095079/b095079.txt">Table of n, a(n) for n = 1..10000</a> %H A095079 A. Karttunen and J. Moyer, <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a> %t A095079 Select[Prime[Range[1000]], DigitCount[#, 2, 0] == 2 &] %o A095079 (PARI) %o A095079 { forprime(p=2,8000, %o A095079 v=binary(p); s=0; %o A095079 for(k=1,#v, s+=if(v[k]==0,+1,0)); %o A095079 if(s==2,print1(p,", ")) %o A095079 ) } %o A095079 (Python) %o A095079 from sympy import isprime %o A095079 from itertools import combinations, count, islice %o A095079 def agen(): # generator of terms %o A095079 for d in count(2): %o A095079 b = (1<<(d+2))-1 %o A095079 for i, j in combinations(range(d), 2): %o A095079 if isprime(t:=b-(1<<(d-i))-(1<<(d-j))): %o A095079 yield t %o A095079 print(list(islice(agen(), 43))) # _Michael S. Branicky_, Dec 27 2023 %Y A095079 Cf. A095059. %K A095079 nonn,base,easy %O A095079 1,1 %A A095079 _Antti Karttunen_, Jun 01 2004