This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095080 #23 Jul 01 2021 06:12:02 %S A095080 2,3,5,7,11,13,23,29,31,37,41,47,71,73,79,83,89,97,107,109,113,131, %T A095080 139,149,151,157,167,173,181,191,193,199,223,227,233,241,251,257,269, %U A095080 277,283,293,311,317,337,353,359,367,379,397,401,409,419,421 %N A095080 Fibeven primes, i.e., primes p whose Zeckendorf-expansion A014417(p) ends with zero. %H A095080 Alois P. Heinz, <a href="/A095080/b095080.txt">Table of n, a(n) for n = 1..10000</a> %H A095080 A. Karttunen and J. Moyer, <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a> %p A095080 F:= combinat[fibonacci]: %p A095080 b:= proc(n) option remember; local j; %p A095080 if n=0 then 0 %p A095080 else for j from 2 while F(j+1)<=n do od; %p A095080 b(n-F(j))+2^(j-2) %p A095080 fi %p A095080 end: %p A095080 a:= proc(n) option remember; local p; %p A095080 p:= `if`(n=1, 1, a(n-1)); %p A095080 do p:= nextprime(p); %p A095080 if b(p)::even then break fi %p A095080 od; p %p A095080 end: %p A095080 seq(a(n), n=1..100); # _Alois P. Heinz_, Mar 27 2016 %t A095080 F = Fibonacci; %t A095080 b[n_] := b[n] = Module[{j}, %t A095080 If[n == 0, 0, For[j = 2, F[j + 1] <= n, j++]; %t A095080 b[n - F[j]] + 2^(j - 2)]]; %t A095080 a[n_] := a[n] = Module[{p}, %t A095080 p = If[n == 1, 1, a[n - 1]]; While[True, %t A095080 p = NextPrime[p]; If[ EvenQ[b[p]], Break[]]]; p]; %t A095080 Array[a, 100] (* _Jean-François Alcover_, Jul 01 2021, after _Alois P. Heinz_ *) %o A095080 (Python) %o A095080 from sympy import fibonacci, primerange %o A095080 def a(n): %o A095080 k=0 %o A095080 x=0 %o A095080 while n>0: %o A095080 k=0 %o A095080 while fibonacci(k)<=n: k+=1 %o A095080 x+=10**(k - 3) %o A095080 n-=fibonacci(k - 1) %o A095080 return x %o A095080 def ok(n): %o A095080 return str(a(n))[-1]=="0" %o A095080 print([n for n in primerange(1, 1001) if ok(n)]) # _Indranil Ghosh_, Jun 07 2017 %Y A095080 Intersection of A000040 and A022342. Union of A095082 and A095087. Cf. A095060, A095081. %K A095080 nonn %O A095080 1,1 %A A095080 _Antti Karttunen_, Jun 01 2004