This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095082 #16 Nov 10 2021 17:07:43 %S A095082 3,5,11,13,29,37,47,71,73,79,89,97,107,113,131,139,149,157,173,181, %T A095082 191,199,223,233,241,251,257,283,293,317,359,367,401,409,419,443,461, %U A095082 479,487,503,521,547,563,571,587,613,631,647,673,683,691,733 %N A095082 Fib00 primes, i.e., primes p whose Zeckendorf-expansion A014417(p) ends with two zeros. %H A095082 A. Karttunen and J. Moyer, <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a> %o A095082 (Python) %o A095082 from sympy import fibonacci, primerange %o A095082 def a(n): %o A095082 k=0 %o A095082 x=0 %o A095082 while n>0: %o A095082 k=0 %o A095082 while fibonacci(k)<=n: k+=1 %o A095082 x+=10**(k - 3) %o A095082 n-=fibonacci(k - 1) %o A095082 return x %o A095082 def ok(n): return str(a(n))[-2:]=="00" %o A095082 print([n for n in primerange(1, 1001) if ok(n)]) # _Indranil Ghosh_, Jun 08 2017 %o A095082 (PARI) list(lim)=my(v=List(), w=quadgen(20), phi=(1+w)/2, p2=phi^2, x=(2*phi-2)*p2, q); lim=lim\1+1; while(x<lim, if(isprime(q=x\1), listput(v,q)); x+=p2); Vec(v) \\ _Charles R Greathouse IV_, Nov 10 2021 %Y A095082 Cf. A095062. Intersection of A000040 and A026274. Union of A095085 and A095088. %K A095082 nonn %O A095082 1,1 %A A095082 _Antti Karttunen_, Jun 01 2004