This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095103 #25 Jan 11 2022 12:42:17 %S A095103 19,43,67,107,127,139,163,179,211,223,227,283,307,331,347,367,379,443, %T A095103 463,467,487,491,499,523,547,571,587,619,631,643,683,691,727,739,787, %U A095103 811,823,827,859,883,907,947,967,1019,1051,1087,1123,1163 %N A095103 4k+3 primes whose Legendre-vector is not valid Dyck-path. %H A095103 A. Karttunen and J. Moyer, <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a> %F A095103 a(n) = 4*A095273(n) + 3. %t A095103 L = {}; Do[p = Prime[k]; If[Mod[p, 4] == 3 && Min[Table[Sum[JacobiSymbol[n, p], {n, 0, m}], {m, 0, p - 1}]] < 0, L = Append[L, p]], {k, 1, 192}]; L (* From Jonathan Sondow, Oct 25 2011 *) %o A095103 (PARI) isok(m) = {my(s=0); if(m%4==3&&isprime(m), for(i=1, m-1, if((s+=kronecker(i, m))<0, return(1)))); 0; } \\ _Jinyuan Wang_, Jul 20 2020 %o A095103 (Sage) %o A095103 def A095103_list(n) : %o A095103 def is_Motzkin(n, k): %o A095103 s = 0 %o A095103 for i in (1..k) : %o A095103 s += jacobi_symbol(i, n) %o A095103 if s < 0 : return false %o A095103 return true %o A095103 P = filter(is_prime, range(n+1)[3::4]) %o A095103 return filter(lambda m: not is_Motzkin(m, m//2), P) %o A095103 A095103_list(1163) # _Peter Luschny_, Aug 08 2012 %Y A095103 Intersection of A000040 and A095101. Complement of A095102 in A002145. %Y A095103 Cf. A095093, A095108 (diving indices). %K A095103 nonn %O A095103 1,1 %A A095103 _Antti Karttunen_, Jun 01 2004