This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095111 #33 Feb 05 2023 09:25:02 %S A095111 1,0,0,0,1,0,1,1,0,1,1,1,0,0,1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,1,0,0,0,1, %T A095111 0,1,1,1,0,1,0,0,1,0,0,0,1,1,0,0,0,1,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0,1, %U A095111 1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,1,1,1,0,0,1,1,1,0,1,0,0,1,0,0,0,1 %N A095111 One minus the parity of 1-fibits in Zeckendorf expansion A014417(n). %D A095111 Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2. %H A095111 Amiram Eldar, <a href="/A095111/b095111.txt">Table of n, a(n) for n = 0..10000</a> %H A095111 Leonard Rozendaal, <a href="https://hal.archives-ouvertes.fr/hal-01552281">Pisano word, tesselation, plane-filling fractal</a>, Preprint, 2017. %H A095111 <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>. %F A095111 a(n) = A010059(A003714(n)). %F A095111 a(n) = 1 - A095076(n). %F A095111 a(n) = a'(n+1) where a'(1) = 1 and if n >= 2 with F(k) < n <= F(k+1), a'(n)=1-a'(n-F(k)), where F(k) = A000045(k). E.g., F(5) = 5 < 6 <= F(6) = 8, thus a'(6) = 1 - a'(1) = 0 and a(5) = 0. - _Benoit Cloitre_, May 10 2005 %t A095111 1 - Mod[DigitCount[Select[Range[0, 540], BitAnd[#, 2 #] == 0 &], 2, 1], 2] (* _Amiram Eldar_, Feb 05 2023 *) %o A095111 (Python) %o A095111 def ok(n): return 1 if n==0 else n*(2*n & n == 0) %o A095111 print([1 - bin(n)[2:].count("1")%2 for n in range(1001) if ok(n)]) # _Indranil Ghosh_, Jun 08 2017 %Y A095111 Characteristic function of A095096. %Y A095111 Run counts are given by A095276. %Y A095111 Cf. A000045, A003714, A010059, A014417, A095076, A105774. %K A095111 nonn %O A095111 0,1 %A A095111 _Antti Karttunen_, Jun 01 2004