cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095117 a(n) = pi(n) + n, where pi(n) = A000720(n) is the number of primes <= n.

This page as a plain text file.
%I A095117 #42 Feb 16 2024 10:15:20
%S A095117 0,1,3,5,6,8,9,11,12,13,14,16,17,19,20,21,22,24,25,27,28,29,30,32,33,
%T A095117 34,35,36,37,39,40,42,43,44,45,46,47,49,50,51,52,54,55,57,58,59,60,62,
%U A095117 63,64,65,66,67,69,70,71,72,73,74,76,77,79,80,81,82,83,84,86,87,88,89,91
%N A095117 a(n) = pi(n) + n, where pi(n) = A000720(n) is the number of primes <= n.
%C A095117 Positions of first occurrences of n in A165634: A165634(a(n))=n for n>0. - _Reinhard Zumkeller_, Sep 23 2009
%C A095117 There exists at least one prime number p such that n < p <= a(n) for n >= 2. For example, 2 is in (2, 3], 5 in (3, 5], 5 in (4, 6], ..., and primes 73, 79, 83 and 89 are in (71, 91] (see Corollary 1 in the paper by Ya-Ping Lu attached in the links section). - _Ya-Ping Lu_, Feb 21 2021
%H A095117 Carmine Suriano, <a href="/A095117/b095117.txt">Table of n, a(n) for n = 0..9999</a>
%H A095117 Ya-Ping Lu, <a href="/A337788/a337788.pdf">Lower Bounds for the Number of Primes in Some Integer Intervals</a>
%F A095117 a(0) = 0; for n>0, a(n) = a(n-1) + (if n is prime then 2, else 1). - _Robert G. Wilson v_, Apr 22 2007; corrected by _David James Sycamore_, Aug 16 2018
%p A095117 with(numtheory): seq(n+pi(n),n=1..90); # _Emeric Deutsch_, May 02 2007
%t A095117 Table[ PrimePi@n + n, {n, 0, 71}] (* _Robert G. Wilson v_, Apr 22 2007 *)
%o A095117 (Haskell)
%o A095117 a095117 n = a000720 n + toInteger n  -- _Reinhard Zumkeller_, Apr 17 2012
%o A095117 (PARI) a(n) = n + primepi(n); \\ _Michel Marcus_, Feb 21 2021
%o A095117 (Python)
%o A095117 from sympy import primepi
%o A095117 def a(n): return primepi(n) + n
%o A095117 print([a(n) for n in range(72)]) # _Michael S. Branicky_, Feb 21 2021
%Y A095117 Complement of A095116.
%Y A095117 Cf. A000720, A064427.
%K A095117 easy,nonn
%O A095117 0,3
%A A095117 _Dean Hickerson_, following a suggestion of _Leroy Quet_, May 28 2004
%E A095117 Edited by _N. J. A. Sloane_, Jul 02 2008 at the suggestion of _R. J. Mathar_