This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095141 #33 Aug 04 2025 03:39:15 %S A095141 1,1,1,1,2,1,1,3,3,1,1,4,0,4,1,1,5,4,4,5,1,1,0,3,2,3,0,1,1,1,3,5,5,3, %T A095141 1,1,1,2,4,2,4,2,4,2,1,1,3,0,0,0,0,0,0,3,1,1,4,3,0,0,0,0,0,3,4,1,1,5, %U A095141 1,3,0,0,0,0,3,1,5,1,1,0,0,4,3,0,0,0,3,4,0,0,1,1,1,0,4,1,3,0,0,3,1,4,0,1,1 %N A095141 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 6. %H A095141 Bill Gosper, <a href="/A095141/a095141.png">Pastel-colored illustration of triangle</a> %H A095141 Ilya Gutkovskiy, <a href="/A275198/a275198.pdf">Illustrations (triangle formed by reading Pascal's triangle mod m)</a> %H A095141 Ivan Korec, <a href="http://actamath.savbb.sk/acta0405.shtml">Definability of Pascal's Triangles Modulo 4 and 6 and Some Other Binary Operations from Their Associated Equivalence Relations</a>, Acta Univ. M. Belii Ser. Math. 4 (1996), pp. 53-66. %H A095141 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %F A095141 T(i, j) = binomial(i, j) mod 6. %t A095141 Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 6] %t A095141 Graphics[Table[{%[Mod[Binomial[n, k], 6]/5], RegularPolygon[{4√3 (k - n/2), -6 n}, {4,π/6}, 6]}, {n, 0, 105}, {k, 0, n}]] (* Mma code for illustration, _Bill Gosper_, Aug 05 2017 *) %o A095141 (Python) %o A095141 from math import isqrt, comb %o A095141 from sympy.ntheory.modular import crt %o A095141 def A095141(n): %o A095141 w, c = n-((r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))*(r+1)>>1), 1 %o A095141 d = int(not ~r & w) %o A095141 while True: %o A095141 r, a = divmod(r,3) %o A095141 w, b = divmod(w,3) %o A095141 c = c*comb(a,b)%3 %o A095141 if r<3 and w<3: %o A095141 c = c*comb(r,w)%3 %o A095141 break %o A095141 return crt([3,2],[c,d])[0] # _Chai Wah Wu_, May 01 2025 %Y A095141 Cf. A007318, A047999, A083093, A034931, A095140, A095142, A034930, A095143, A008975, A095144, A095145, A034932. %Y A095141 Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), (this sequence) (m = 6), A095142 (m = 7), A034930(m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16). %K A095141 easy,nonn,tabl %O A095141 0,5 %A A095141 _Robert G. Wilson v_, May 29 2004