cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095142 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 7.

This page as a plain text file.
%I A095142 #34 Apr 30 2025 15:04:46
%S A095142 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,1,5,3,3,5,1,1,6,1,6,1,6,1,1,0,0,0,0,0,
%T A095142 0,1,1,1,0,0,0,0,0,1,1,1,2,1,0,0,0,0,1,2,1,1,3,3,1,0,0,0,1,3,3,1,1,4,
%U A095142 6,4,1,0,0,1,4,6,4,1,1,5,3,3,5,1,0,1,5,3,3,5,1,1,6,1,6,1,6,1,1,6,1,6,1,6,1
%N A095142 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 7.
%C A095142 {T(n,k)} is a fractal gasket with fractal (Hausdorff) dimension log(A000217(7))/log(7) = log(28)/log(7) = 1.71241... (see Reiter reference). Replacing values greater than 1 with 1 produces a binary gasket with the same dimension (see Bondarenko reference). - _Richard L. Ollerton_, Dec 14 2021
%D A095142 Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
%D A095142 Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
%H A095142 Ilya Gutkovskiy, <a href="/A275198/a275198.pdf">Illustrations (triangle formed by reading Pascal's triangle mod m)</a>
%H A095142 Boris A. Bondarenko, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/pascal.html">Generalized Pascal Triangles and Pyramids</a>, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see pp. 130-132.
%H A095142 A. M. Reiter, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Issues/31-2.pdf">Determining the dimension of fractals generated by Pascal's triangle</a>, Fibonacci Quarterly, 31(2), 1993, pp. 112-120.
%H A095142 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>
%F A095142 T(i, j) = binomial(i, j) mod 7.
%t A095142 Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 7]
%o A095142 (Python)
%o A095142 from math import comb, isqrt
%o A095142 def A095142(n):
%o A095142     def f(m,k):
%o A095142         if m<7 and k<7: return comb(m,k)%7
%o A095142         c,a = divmod(m,7)
%o A095142         d,b = divmod(k,7)
%o A095142         return f(c,d)*f(a,b)%7
%o A095142     return f(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),n-comb(r+1,2)) # _Chai Wah Wu_, Apr 30 2025
%Y A095142 Cf. A007318, A047999, A083093, A034931, A095140, A095141, A034930, A095143, A008975, A095144, A095145, A034932.
%Y A095142 Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), (this sequence) (m = 7), A034930(m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
%K A095142 easy,nonn,tabl
%O A095142 0,5
%A A095142 _Robert G. Wilson v_, May 29 2004