This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095143 #31 Jul 23 2025 00:57:11 %S A095143 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,1,5,1,1,5,1,1,6,6,2,6,6,1,1,7,3,8,8,3, %T A095143 7,1,1,8,1,2,7,2,1,8,1,1,0,0,3,0,0,3,0,0,1,1,1,0,3,3,0,3,3,0,1,1,1,2, %U A095143 1,3,6,3,3,6,3,1,2,1,1,3,3,4,0,0,6,0,0,4,3,3,1,1,4,6,7,4,0,6,6,0,4,7,6,4,1 %N A095143 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 9. %H A095143 Ilya Gutkovskiy, <a href="/A275198/a275198.pdf">Illustrations (triangle formed by reading Pascal's triangle mod m)</a> %H A095143 James G. Huard, Blair K. Spearman and Kenneth S. Williams, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa78/aa7843.pdf">Pascal's triangle (mod 9)</a>, Acta Arithmetica (1997), Volume: 78, Issue: 4, page 331-349. %H A095143 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %F A095143 T(i, j) = binomial(i, j) mod 9. %e A095143 Triangle begins: %e A095143 1; %e A095143 1, 1; %e A095143 1, 2, 1; %e A095143 1, 3, 3, 1; %e A095143 1, 4, 6, 4, 1; %e A095143 1, 5, 1, 1, 5, 1; %e A095143 1, 6, 6, 2, 6, 6, 1; %e A095143 ... %t A095143 Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 9] %o A095143 (Python) %o A095143 from math import isqrt, comb %o A095143 from gmpy2 import digits %o A095143 def A095143(n): %o A095143 g = (m:=isqrt(f:=n+1<<1))-(f<=m*(m+1)) %o A095143 k = n-comb(g+1,2) %o A095143 if sum(int(d) for d in digits(k,3))+sum(int(d) for d in digits(g-k,3))-sum(int(d) for d in digits(g,3))>2: return 0 %o A095143 s, c, d = digits(g,3), 1, 0 %o A095143 w = (digits(k,3)).zfill(l:=len(s)) %o A095143 if l == 1: return comb(g,k)%9 %o A095143 for i in range(0,l-1): %o A095143 r, t = s[i:i+2], w[i:i+2] %o A095143 if (x:=int(r,3)) < (y:=int(t,3)): %o A095143 d += (t[0]>r[0])+(t[1]>r[1]) %o A095143 if r[1]>=t[1]: %o A095143 c = c*comb(int(r[1],3),int(t[1],3))%9 %o A095143 else: %o A095143 c = c*comb(x,y)%9 %o A095143 for i in range(1,l-1): %o A095143 if w[i]>s[i] or (z:=comb(int(s[i],3),int(w[i],3))) == 3: %o A095143 d -= 1 %o A095143 else: %o A095143 c = c*pow(z,-1,9)%9 %o A095143 return c*3**d%9 # _Chai Wah Wu_, Jul 19 2025 %Y A095143 Cf. A007318, A047999, A083093, A034931, A095140, A095141, A095142, A034930, A008975, A095144, A095145, A034932. %Y A095143 Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), (this sequence) (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16). %K A095143 easy,nonn,tabl %O A095143 0,5 %A A095143 _Robert G. Wilson v_, May 29 2004