This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095210 #8 Nov 18 2018 00:05:36 %S A095210 1,4,54,96,37500,60,49412580,107520,16533720,2520,718985409939720, %T A095210 27720,8395697954737253160,360360,360360,23616552960, %U A095210 596208601546720632677647440,12252240,24240072441867520569208380462960,232792560,232792560,232792560,4860817599682675053132316060135142981520 %N A095210 a(n) = least multiple of n such that the geometric mean of a(1), ..., a(n) is an integer. %C A095210 a(11), if it exists, is greater than 10^12. - _Ryan Propper_, Oct 10 2005 %C A095210 Comments from Lambert Klasen (lambert.klasen(AT)gmx.net), Oct 25 2005: "Sequence is infinite. For a prime p, a(p) has p^p as a factor. Factoring the a(n) gives the pattern for the exponents: %C A095210 [2, 1] %C A095210 [2, 2] %C A095210 [2, 1; 3, 3] %C A095210 [2, 5; 3, 1] %C A095210 [2, 2; 3, 1; 5, 5] %C A095210 [2, 2; 3, 1; 5, 1] %C A095210 [2, 2; 3, 1; 5, 1; 7, 7] %C A095210 [2, 10; 3, 1; 5, 1; 7, 1] %C A095210 [2, 3; 3, 10; 5, 1; 7, 1] %C A095210 [2, 3; 3, 2; 5, 1; 7, 1] %C A095210 [2, 3; 3, 2; 5, 1; 7, 1; 11, 11] %C A095210 [2, 3; 3, 2; 5, 1; 7, 1; 11, 1] %C A095210 [2, 3; 3, 2; 5, 1; 7, 1; 11, 1; 13, 13] %C A095210 [2, 3; 3, 2; 5, 1; 7, 1; 11, 1; 13, 1] %C A095210 [2, 3; 3, 2; 5, 1; 7, 1; 11, 1; 13, 1] %C A095210 [2, 19; 3, 2; 5, 1; 7, 1; 11, 1; 13, 1] %C A095210 [2, 4; 3, 2; 5, 1; 7, 1; 11, 1; 13, 1; 17, 17] %C A095210 [2, 4; 3, 2; 5, 1; 7, 1; 11, 1; 13, 1; 17, 1] %C A095210 [2, 4; 3, 2; 5, 1; 7, 1; 11, 1; 13, 1; 17, 1; 19, 19] %C A095210 [2, 4; 3, 2; 5, 1; 7, 1; 11, 1; 13, 1; 17, 1; 19, 1] %C A095210 [2, 4; 3, 2; 5, 1; 7, 1; 11, 1; 13, 1; 17, 1; 19, 1] %C A095210 [2, 4; 3, 2; 5, 1; 7, 1; 11, 1; 13, 1; 17, 1; 19, 1] %C A095210 [2, 4; 3, 2; 5, 1; 7, 1; 11, 1; 13, 1; 17, 1; 19, 1; 23, 23]." %e A095210 (1*4*54*96)^(1/4) = (20736)^(1/4) = 12. %e A095210 a(5) = 37500 = 2^2 * 3 * 5^5. %e A095210 a(11) = 718985409939720 = 2^3 * 3^2 * 5 * 7 * 11^11. %t A095210 p = 1; Do[k = 1; While[ !IntegerQ[(p*k*n)^(1/n)], k++ ]; Print[k*n]; p *= (k*n), {n, 1, 10}] (* _Ryan Propper_, Oct 10 2005 *) %Y A095210 Cf. A095209, A095211. %K A095210 nonn %O A095210 1,2 %A A095210 _Amarnath Murthy_, Jun 08 2004 %E A095210 More terms from _Ryan Propper_, Oct 10 2005 %E A095210 a(11) onwards from Lambert Klasen (lambert.klasen(AT)gmx.net), Oct 25 2005