cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095238 a(1) = 1, a(n) = n*(sum of all previous terms mod n).

This page as a plain text file.
%I A095238 #8 Jul 24 2015 23:25:38
%S A095238 1,2,0,12,0,18,35,32,9,90,11,72,117,98,30,240,34,162,247,200,63,462,
%T A095238 69,288,425,338,108,756,116,450,651,512,165,1122,175,648,925,722,234,
%U A095238 1560,246,882,1247,968,315,2070,329,1152,1617,1250,408,2652,424,1458,2035
%N A095238 a(1) = 1, a(n) = n*(sum of all previous terms mod n).
%C A095238 An open question is whether the sequence contains zeros except for the 3rd and the 5th number. I checked this up to a(10000), which happens to be 99990000. - _Johan Claes_, Jun 16 2004
%F A095238 Appears to satisfy a linear recurrence with characteristic polynomial (1+x)(1+x^3)^2(1-x^3)^3 (checked up to n = 10^4). - _Ralf Stephan_, Dec 04 2004
%e A095238 a(6) = 6*((1 + 2 + 0 + 12 + 0) mod 6) = 18.
%p A095238 A095238:=proc(n) option remember; n*(add(A095238(i),i=1..n-1) mod n) end: A095238(1):=1: seq(A095238(n),n=1..100);
%t A095238 a[1] = 1; a[n_] := a[n] = n*Mod[Sum[a[i], {i, n - 1}], n]; Table[ a[n], {n, 55}] (* _Robert G. Wilson v_, Jun 16 2004 *)
%o A095238 (PARI) a=vector(1000);a[1]=1;for(i=2,1000,a[i]=i*lift(Mod(sum(j=1,i-1,a[j]),i)))
%Y A095238 Cf. A074143.
%K A095238 nonn
%O A095238 1,2
%A A095238 _Amarnath Murthy_, Jun 15 2004
%E A095238 More terms from Alec Mihailovs (alec(AT)mihailovs.com), _Robert G. Wilson v_ and _Johan Claes_, Jun 16 2004