cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095256 Number of numbers not divisible by 10 that stay multiples of themselves when freed of their last n digits.

This page as a plain text file.
%I A095256 #25 Aug 29 2024 01:19:43
%S A095256 23,473,7053,93643,1166714,13969985,162725300,1857511487,20877697534,
%T A095256 231802823099,2548286736153,27785452448917,300880375389561,
%U A095256 3239062263180829,34693207724723990,369957928177109127,3929837791070240044,41600963003695964039,439035480966899467108
%N A095256 Number of numbers not divisible by 10 that stay multiples of themselves when freed of their last n digits.
%H A095256 Max Alekseyev, <a href="/A095256/b095256.txt">Table of n, a(n) for n = 1..36</a>
%H A095256 S. Das <a href="http://ken.duisenberg.com/potw/archive/040323sol.html">Dividing by Dropping Digits</a>
%F A095256 a(n) = Sum_{r=1..10^n-1} tau(r) = A006218(A002283(n)).
%F A095256 a(n) = A057494(n) - (n+1)^2. - _Max Alekseyev_, Jan 25 2010
%e A095256 We have the following a(1)=23 two-digit numbers not ending in zero: 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 26, 28, 33, 36, 39, 44, 48, 55, 66, 77, 88, 99; each is divisible by its tens digit.
%t A095256 k = s = 0; Do[ While[ k < 10^n - 1, k++; s = s + DivisorSigma[ 0, k ]]; Print[s], {n, 9}] (* _Robert G. Wilson v_, Jun 05 2004 *)
%o A095256 (Python)
%o A095256 from math import isqrt
%o A095256 def A095256(n): return -(s:=isqrt(m:=10**n))**2+(sum(m//k for k in range(1,s+1))<<1)-(n+1)**2 # _Chai Wah Wu_, Oct 23 2023
%Y A095256 Cf. A057494.
%K A095256 base,nonn
%O A095256 1,1
%A A095256 _Lekraj Beedassy_, Jul 02 2004
%E A095256 a(5)-a(9) from _Robert G. Wilson v_, Jul 05 2004
%E A095256 a(10) onward from _Max Alekseyev_, Jan 25 2010, Aug 04 2015