This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095265 #12 Jun 17 2017 02:59:23 %S A095265 1,22,103,284,605,1106,1827,2808,4089,5710,7711,10132,13013,16394, %T A095265 20315,24816,29937,35718,42199,49420,57421,66242,75923,86504,98025, %U A095265 110526,124047,138628,154309,171130,189131,208352,228833,250614,273735,298236 %N A095265 A sequence generated from a 4th degree Pascal's Triangle polynomial. %C A095265 The characteristic polynomial of M = x^4 - 4x^3 + 6x^2 - 4x + 1. (the recursive multipliers are seen in the polynomial with changed signs: (4), (-6), (4), (-1). %H A095265 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A095265 a(n+4) = 4*a(n+3) - 6*a(n+2) + 4*a(n+1) - a(n), (multipliers which are present with changed signs in the characteristic polynomial, x^4 - 4x^3 + 6x^2 - 4x + 1. Given the 4 X 4 matrix derived from an A056939 triangle (fill in with zeros): M = [1 0 0 0 / 1 1 0 0 / 1 4 1 0 / 1 10 10 1], then M^n * [1 0 0 0] = [1 n A000384(n) a(n)] where A000384 is the hexagonal series 1, 6, 15, 28... 3. a(n) = (20/3)n^3 - 10n^2 + (13/3)n. %F A095265 G.f.: x*(21*x^2+18*x+1) / (x-1)^4. - _Colin Barker_, May 25 2013 %e A095265 a(13) = 13013 = 4*a(12) - 6*a(11) + 4*a(10) - a(9) = 4*10132 - 6*7711 + 4*5710 - 4089. %e A095265 a(6) = 1106 since M^6 * [1 0 0 0] = [ 1 6 66 1106]. %e A095265 a(6) = 1106 = f(n) = (20/3)(6)^3 -10*(6^2) +(13/3)*6 = 1440 - 360 + 26. %p A095265 a:= n-> (20*n^2-30*n+13)*n/3: %p A095265 seq(a(n), n=1..50); # _Alois P. Heinz_, May 25 2013 %t A095265 a[n_] := (MatrixPower[{{1, 0, 0, 0}, {1, 1, 0, 0}, {1, 4, 1, 0}, {1, 10, 10, 1}}, n].{{1}, {0}, {0}, {0}})[[4, 1]]; Table[ a[n], {n, 36}] (* _Robert G. Wilson v_, Jun 05 2004 *) %Y A095265 Cf. A056939, A000384. %K A095265 nonn,easy %O A095265 1,2 %A A095265 _Gary W. Adamson_, May 31 2004 %E A095265 Edited and corrected by _Robert G. Wilson v_, Jun 05 2004