This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095280 #18 Jan 17 2023 15:34:37 %S A095280 3,11,17,19,29,37,43,53,59,61,67,71,79,97,101,103,113,127,131,137,139, %T A095280 163,173,179,181,197,199,211,223,229,239,241,257,263,271,281,283,307, %U A095280 313,317,331,347,349,359,367,373,383,389,401,409,419,433 %N A095280 Lower Wythoff primes, i.e., primes in A000201. %C A095280 Contains all primes p whose Zeckendorf-expansion A014417(p) ends with an even number of 0's. %C A095280 For generalizations and conjectures, see A184774. %H A095280 Robert Israel, <a href="/A095280/b095280.txt">Table of n, a(n) for n = 1..10000</a> %H A095280 Antti Karttunen and J. Moyer, <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a> %p A095280 R:= NULL: count:= 0: %p A095280 for n from 1 while count < 100 do %p A095280 p:= floor(n*phi); %p A095280 if isprime(p) then R:= R,p; count:= count+1 fi %p A095280 od: %p A095280 R; # _Robert Israel_, Jan 17 2023 %t A095280 (See A184792.) %o A095280 (Python) %o A095280 from math import isqrt %o A095280 from itertools import count, islice %o A095280 from sympy import isprime %o A095280 def A095280_gen(): # generator of terms %o A095280 return filter(isprime,((n+isqrt(5*n**2)>>1) for n in count(1))) %o A095280 A095280_list = list(islice(A095280_gen(),30)) # _Chai Wah Wu_, Aug 16 2022 %Y A095280 Intersection of A000040 & A000201. Complement of A095281 in A000040. Cf. A095080, A095083, A095084, A095290, A184792, A184793, A184794, A184796. %K A095280 nonn %O A095280 1,1 %A A095280 _Antti Karttunen_, Jun 04 2004