cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095282 Primes whose binary-expansion ends with an even number of 1's.

This page as a plain text file.
%I A095282 #18 Dec 15 2019 10:36:19
%S A095282 2,3,11,19,43,47,59,67,79,83,107,131,139,163,179,191,211,227,239,251,
%T A095282 271,283,307,331,347,367,379,419,431,443,463,467,491,499,523,547,563,
%U A095282 571,587,619,643,659,683,691,719,739,751,787,811,827,859
%N A095282 Primes whose binary-expansion ends with an even number of 1's.
%H A095282 Charles R Greathouse IV, <a href="/A095282/b095282.txt">Table of n, a(n) for n = 1..10000</a>
%H A095282 A. Karttunen and J. Moyer, <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a>
%p A095282 q:= proc(n) local i, l, r; l, r:= convert(n, base, 2), 0;
%p A095282       for i to nops(l) while l[i]=1 do r:=r+1 od; is(r, even)
%p A095282     end:
%p A095282 select(q, [ithprime(i)$i=1..200])[];  # _Alois P. Heinz_, Dec 15 2019
%t A095282 been1Q[n_]:=Module[{c=Split[IntegerDigits[n,2]][[-1]]},c[[1]]==1&&EvenQ[ Length[ c]]]; Join[{2},Select[Prime[Range[150]],been1Q]] (* _Harvey P. Dale_, Dec 14 2019 *)
%o A095282 (PARI) is(n)=valuation(n+1,2)%2==0 && isprime(n) \\ _Charles R Greathouse IV_, Oct 09 2013
%Y A095282 Intersection of A000040 & (complement of A079523). Complement of A095283 in A000040. Cf. A027699, A095292.
%K A095282 nonn,base,easy
%O A095282 1,1
%A A095282 _Antti Karttunen_, Jun 04 2004