This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095283 #17 Jan 03 2022 21:48:45 %S A095283 5,7,13,17,23,29,31,37,41,53,61,71,73,89,97,101,103,109,113,127,137, %T A095283 149,151,157,167,173,181,193,197,199,223,229,233,241,257,263,269,277, %U A095283 281,293,311,313,317,337,349,353,359,373,383,389,397,401,409 %N A095283 Primes whose binary-expansion ends with an odd number of 1's. %H A095283 Charles R Greathouse IV, <a href="/A095283/b095283.txt">Table of n, a(n) for n = 1..10000</a> %H A095283 A. Karttunen and J. Moyer, <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a> %p A095283 q:= proc(n) local i, l, r; l, r:= convert(n, base, 2), 0; %p A095283 for i to nops(l) while l[i]=1 do r:=r+1 od; is(r, odd) %p A095283 end: %p A095283 select(q, [ithprime(i)$i=1..150])[]; # _Alois P. Heinz_, Dec 15 2019 %t A095283 Select[Prime[Range[100]], MatchQ[IntegerDigits[#, 2], {b:(1)..}|{___, 0, b:(1)..} /; OddQ[Length[{b}]]]&] (* _Jean-François Alcover_, Jan 03 2022 *) %o A095283 (PARI) is(n)=valuation(n+1,2)%2 && isprime(n) \\ _Charles R Greathouse IV_, Oct 09 2013 %o A095283 (Python) %o A095283 from sympy import isprime %o A095283 def ok(n): b = bin(n); return (len(b)-len(b.rstrip("1")))%2 and isprime(n) %o A095283 print([k for k in range(1, 401) if ok(k)]) # _Michael S. Branicky_, Jan 03 2022 %Y A095283 Intersection of A000040 & A079523. Complement of A095282 in A000040. Cf. A027697, A095293. %K A095283 nonn,base,easy %O A095283 1,1 %A A095283 _Antti Karttunen_, Jun 04 2004