This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095287 #24 Aug 16 2025 04:49:56 %S A095287 2,5,17,19,37,41,67,71,73,83,89,97,101,113,131,137,139,149,163,193, %T A095287 197,257,263,269,271,277,281,283,293,307,313,331,337,353,389,397,401, %U A095287 409,419,421,433,449,457,521,523,541,547,557,563,569,577,587,593,601,613 %N A095287 Primes in whose binary expansion the number of 1-bits is <= 1 + number of 0-bits. %H A095287 Indranil Ghosh, <a href="/A095287/b095287.txt">Table of n, a(n) for n = 1..25000</a> %H A095287 A. Karttunen and J. Moyer: <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a> %e A095287 From _Indranil Ghosh_, Feb 03 2017: (Start) %e A095287 5 is in the sequence because 5_10 = 101_2. '101' has two 1's and one 0. %e A095287 17 is in the sequence because 17_10 = 10001_2. '10001' has two 1's and three 0's. (End) %t A095287 Select[Prime[Range[200]],DigitCount[#,2,1]<=1+DigitCount[#,2,0]&] (* _Harvey P. Dale_, Apr 18 2023 *) %o A095287 (PARI) forprime(p=2,613,v=binary(p);s=0;for(k=1,#v,s+=if(v[k]==1,+1,-1));if(s<=1,print1(p,", "))) \\ _Washington Bomfim_, Jan 13 2011 %o A095287 (Python) %o A095287 from sympy import isprime %o A095287 i=1 %o A095287 j=1 %o A095287 while j<=250: %o A095287 if isprime(i) and bin(i)[2:].count("1")<=1+bin(i)[2:].count("0"): %o A095287 print(str(j)+" "+str(i)) %o A095287 j+=1 %o A095287 i+=1 # _Indranil Ghosh_, Feb 03 2017 %Y A095287 Complement of A095286 in A000040. Subset: A095075. Subset of A095315. Cf. also A095297. %K A095287 nonn,base,easy %O A095287 1,1 %A A095287 _Antti Karttunen_, Jun 04 2004