A095309 Numbers such that both their binary and Zeckendorf representations are palindromic.
0, 1, 3, 9, 27, 33, 51, 127, 1755, 2805, 10437, 71377, 547233, 1007727, 2924109, 3358515, 3460299, 59768775, 977921175, 1022225871, 1769996491, 5606742245, 13759209651, 15569747991, 120793923335, 426202820195, 6287935078637, 21296868044633, 25068131362413
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..38
Programs
-
Mathematica
fbz[n_] := Block[{k = Floor[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, a = {}}, While[k > 1, If[Fibonacci[k] <= t, t = t - Fibonacci[k]; AppendTo[a, 1], AppendTo[a, 0]]; k-- ]; a]; Do[b = IntegerDigits[2n + 1, 2]; If[b == Reverse[b], f = fbz[2n + 1]; If[f == Reverse[f], Print[2n + 1]]], {n, 0, 10^9}]
Extensions
a(22)-a(29) from Chai Wah Wu, Jun 14 2018
a(1) = 0 added by Amiram Eldar, Jan 11 2020