This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095314 #18 Oct 26 2023 19:19:17 %S A095314 7,23,29,31,47,59,61,79,103,107,109,127,191,223,239,251,311,317,347, %T A095314 349,359,367,373,379,383,431,439,443,461,463,467,479,487,491,499,503, %U A095314 509,607,631,701,719,727,733,743,751,757,761,823,827,829,859 %N A095314 Primes in whose binary expansion the number of 1 bits is > 2 + number of 0 bits. %H A095314 Robert Israel, <a href="/A095314/b095314.txt">Table of n, a(n) for n = 1..10000</a> %H A095314 A. Karttunen and J. Moyer: <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a> %p A095314 f:= proc(n) local L,d,s; %p A095314 if not isprime(n) then return false fi; %p A095314 L:= convert(n,base,2); %p A095314 convert(L,`+`) > nops(L)/2+1 %p A095314 end proc: %p A095314 select(f, [seq(i,i=3..1000,2)]); # _Robert Israel_, Oct 26 2023 %t A095314 n1Q[p_]:=Module[{be=IntegerDigits[p,2]},Total[be]>2+Count[be,0]]; Select[ Prime[ Range[150]],n1Q] (* _Harvey P. Dale_, Oct 26 2022 *) %o A095314 (PARI) B(x) = { nB = floor(log(x)/log(2)); b1 = 0; b0 = 0; %o A095314 for(i = 0, nB, if(bittest(x,i), b1++;, b0++;); ); %o A095314 if(b1 > (2+b0), return(1);, return(0););}; %o A095314 forprime(x = 2, 859, if(B(x), print1(x, ", "); ); ); %o A095314 \\ _Washington Bomfim_, Jan 12 2011 %Y A095314 Complement of A095315 in A000040. Subset of A095286. Subset: A095318. Cf. also A095334. %K A095314 nonn,base %O A095314 1,1 %A A095314 _Antti Karttunen_, Jun 04 2004