cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095338 Total number of leaves in the labeled graphs of order n.

This page as a plain text file.
%I A095338 #33 Feb 16 2025 08:32:53
%S A095338 0,2,12,96,1280,30720,1376256,117440512,19327352832,6184752906240,
%T A095338 3870280929771520,4755801206503243776,11510768301994760208384,
%U A095338 55006124792465627449131008,519934816499859715457632174080,9735556609752801803494680617287680,361550014853497117429835520396253724672
%N A095338 Total number of leaves in the labeled graphs of order n.
%C A095338 A leaf is defined as a vertex of degree (or valence) 1. - _Michael Somos_, Mar 13 2014
%H A095338 Vincenzo Librandi, <a href="/A095338/b095338.txt">Table of n, a(n) for n = 1..80</a>
%H A095338 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TreeLeaf.html">Tree Leaf</a>
%F A095338 Conjecture: a(n) = n*(n-1)*2^binomial(n-1,2). - _Vladeta Jovovic_, Jan 26 2006
%F A095338 a(n) = n*(n-1)*2^binomial(n-1,2) is correct, since counting the total number of leaves in the labeled graphs of order n is equivalent to counting all labeled rooted graphs of order n where the root is a leaf. - _Bertran Steinsky_, Mar 04 2014
%F A095338 a(n) = 2^(n-1) * A182166(n) for n>=2. - _Joerg Arndt_, Mar 12 2014
%e A095338 G.f. = 2*x^2 + 12*x^3 + 96*x^4 + 1280*x^5 + 30720*x^6 + 1376256*x^7 + ...
%p A095338 A095338:=n->n*(n-1)*2^binomial(n-1,2): seq(A095338(n), n=1..20); # _Wesley Ivan Hurt_, Oct 17 2014
%t A095338 Table[n (n - 1) 2^(Binomial[n-1, 2]), {n, 20}] (* _Vincenzo Librandi_, Mar 14 2014 *)
%o A095338 (PARI) a(n) = n*(n-1)*2^binomial(n-1,2); \\ _Joerg Arndt_, Mar 12 2014
%o A095338 (Magma) [n*(n-1)*2^Binomial(n-1, 2): n in [1..20]]; // _Vincenzo Librandi_, Mar 14 2014
%Y A095338 Cf. A182166.
%K A095338 nonn,easy
%O A095338 1,2
%A A095338 _Eric W. Weisstein_, Jun 02 2004