This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095346 #19 Jan 07 2018 10:12:11 %S A095346 3,1,3,1,1,1,3,1,3,1,1,1,3,1,1,1,3,1,3,1,1,1,3,1,3,1,1,1,3,1,1,1,3,1, %T A095346 3,1,1,1,3,1,1,1,3,1,3,1,1,1,3,1,3,1,1,1,3,1,1,1,3,1,3,1,1,1,3,1,3,1, %U A095346 1,1,3,1,1,1,3,1,3,1,1,1,3,1,1,1,3,1,3,1,1,1,3,1,3,1,1,1,3,1,1,1,3,1,3,1,1 %N A095346 a(n) is the length of the n-th run of A095345. %C A095346 This is the second sequence reached in the infinite process described in A066983 comment line. %C A095346 (a(n)) is a morphic sequence, i.e., a letter to letter projection of a fixed point of a morphism. The morphism is 1->121,2->3,1,3->313. The fixed point is the fixed point 3131213131213... starting with 3. The letter-to-letter map is 1->1, 2->1, 3->3. See also COMMENTS of A108103. - _Michel Dekking_, Jan 06 2018 %D A095346 F. M. Dekking: "What is the long range order in the Kolakoski sequence?" in: The Mathematics of Long-Range Aperiodic Order, ed. R. V. Moody, Kluwer, Dordrecht (1997), pp. 115-125. %F A095346 a(n)=3 if n=1+2*floor(phi*k) for some k where phi=(1+sqrt(5))/2, else a(n)=1. [_Benoit Cloitre_, Mar 02 2009] %e A095346 A095345 begins : 1,1,1,3,1,1,1,3,1,3,...,.. and length or runs of 1's and 3's are 3,1,3,1,1,1,... %Y A095346 Cf. A064353, A095343, A095344, A095345, A108103. %K A095346 nonn %O A095346 1,1 %A A095346 _Benoit Cloitre_, Jun 03 2004