This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095351 #20 Feb 16 2025 08:32:53 %S A095351 0,1,12,192,5120,245760,22020096,3758096384,1236950581248, %T A095351 791648371998720,990791918021509120,2434970217729660813312, %U A095351 11787026741242634453385216,112652543574969605015820304384 %N A095351 Total number of edges in all labeled graphs on n nodes. %H A095351 Maxie D. Schmidt, <a href="https://arxiv.org/abs/1609.02803">Square Series Generating Function Transformations</a>, arXiv preprint arXiv:1609.02803 [math.NT], 2016. %H A095351 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphEdge.html">Graph Edge</a> %H A095351 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LabeledGraph.html">Labeled Graph</a> %F A095351 a(n) = (n*(n-1)/4)*2^(n*(n-1)/2). - _Vladeta Jovovic_, Jun 05 2004 %F A095351 a(n) = Sum_{k=0..binomial(n,2)} A084546(n,k)*k. - _Geoffrey Critzer_, Sep 04 2013 %t A095351 Table[(n*(n-1)/4)2^(n*(n-1)/2),{n,20}] (* _Harvey P. Dale_, Aug 16 2012 *) %t A095351 nn=14;f[x_,y_]:=Sum[(1+y)^Binomial[n,2]x^n/n!,{n,0,nn}];Drop[Range[0,nn]!CoefficientList[Series[a=D[f[x,y],y]/.y->1,{x,0,nn}],x],1] (* _Geoffrey Critzer_, Sep 04 2013 *) %K A095351 nonn %O A095351 1,3 %A A095351 _Eric W. Weisstein_, Jun 03 2004 %E A095351 More terms from _Vladeta Jovovic_, Jun 05 2004