This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095374 #40 Mar 15 2025 11:30:10 %S A095374 1,1,1,2,1,1,3,1,1,3,1,2,3,1,1,3,3,1,3,1,1,5,1,2,3,1,3,3,1,1,5,3,1,3, %T A095374 1,1,5,3,1,4,1,3,3,1,3,3,3,1,5,1,1,7,1,1,3,1,3,5,3,2,3,3,1,3,1,3,7,1, %U A095374 1,3,3,3,5,1,1,5,3,1,3,3,1,7,1,2,5,1,5 %N A095374 One less than the number of divisors of 2*n + 1. %C A095374 Number of special divisors of A095372(n) with A095372(k) form. %H A095374 Michael De Vlieger, <a href="/A095374/b095374.txt">Table of n, a(n) for n = 1..5000</a> %H A095374 Gerzson Kéri, <a href="http://ac.inf.elte.hu/Vol_053_2022/093_53.pdf">The factorization of compressed Chebyshev polynomials and other polynomials related to multiple-angle formulas</a>, Annales Univ. Sci. Budapest (Hungary, 2022) Sect. Comp., Vol. 53, 93-108. %F A095374 a(n) = A023645(2*n + 1) = A000005(2*n + 1) - 1. %F A095374 a(n) = Sum_{i=1..n} 1-ceiling((n+i)/(n-i+1))+floor((n+i)/(n-i+1)). - _Wesley Ivan Hurt_, Feb 26 2017 %F A095374 O.g.f.: Sum_{n >= 1} x^n/(1 - x^(2*n+1)) = x/(1 - x) + Sum_{n >= 1} x^(2*n*(n+1))*(1 + x^(2*n+1))/(1 - x^(2*n+1)). - _Peter Bala_, Mar 04 2019 %F A095374 a(n) = A099774(n+1) - 1. - _Bernard Schott_, Mar 04 2019 %F A095374 Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 3 + 3*log(2)) / 2, where gamma is Euler's constant (A001620). - _Amiram Eldar_, Mar 15 2025 %e A095374 A095372(22) is divisible by {91, 9091, 90909091, 90909090909091, A095372(22)}, thus a(22)=5. %e A095374 G.f.= x + x^2 + x^3 + 2*x^4 + x^5 + x^6 + 3*x^7 + x^8 + x^9 + 3*x^10 + x^11 + 2*x^12 + ... %t A095374 g[x_]:=1+90*(100^x-1)/99 t=Table[1+90*(100^n-1)/99, {n, 1, 35}]; Do[Print[{w, is=Intersection[Divisors[g[w]], t], Length[is]}], {w, 1, 35}] %t A095374 Table[DivisorSigma[0,2n+1],{n,90}]-1 (* _Harvey P. Dale_, Oct 31 2015 *) %t A095374 Table[Sum[1 - Ceiling@ # + Floor@ # &[(n + i)/(n - i + 1)], {i, n}], {n, 87}] (* _Michael De Vlieger_, Feb 27 2017 *) %o A095374 (PARI) {a(n) = if( n<0, 0, numdiv(2*n + 1) - 1)} /* _Michael Somos_, Aug 30 2012 */ %Y A095374 Cf. A000005, A001620, A095372, A095373, A023645, A099774. %K A095374 nonn,easy %O A095374 1,4 %A A095374 _Labos Elemer_, Jun 07 2004