A095376 Values of k such that the total number of 1's in the binary expansions of the first k integers is a multiple of k.
1, 2, 14, 62, 65, 77, 254, 322, 323, 327, 331, 332, 1022, 1281, 1341, 1348, 1349, 1350, 1352, 1353, 1354, 4094, 16382, 21505, 21757, 21762, 21820, 65534, 87299, 87355, 262142, 348161, 349181, 1048574, 1397762, 1398012, 1398020, 1398074, 4194302
Offset: 1
Examples
k=14: {1, 10, 11, 10, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110} includes 28 1's so A000788(14)/14 = 2 is an integer, thus 14 is here.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..100
Programs
-
Mathematica
lib[x_] := Count[IntegerDigits[x, 2], 1]; {s=0, ta=Table[0, {100}], tb=Table[0, {100}], u=1}; Do[s=s+lib[n]; w=n; If[IntegerQ[s/n], Print[{n, s/n}]; ta[[u]]=n; tb[[u]]=s/n; u=u+1], {n, 100000}]
Formula
Integer solutions to {A000788(x)/x is an integer}.
Comments