A095388 Smallest multiple of 2^n whose Collatz (3x+1) trajectory includes at least one larger number.
6, 12, 120, 432, 864, 1728, 3456, 6912, 931328, 4357120, 19789824, 249753600, 499507200, 1272561664, 5226070016, 10452140032, 351882051584, 1215818366976, 3364158439424, 6953815244800, 13907630489600, 27815260979200, 55630521958400, 1343005923475456
Offset: 1
Keywords
Examples
The Collatz trajectory of 120 = 2^3 * 15 begins with {120, 60, 30, 15, 46, 23, 70, 35, 106, 53, 160, ...}, and 160 > 120, and there is no number k < 120 of the form 2^3 * m whose trajectory includes a number > k, so a(3) = 120.
Crossrefs
Cf. A025586.
Programs
-
Mathematica
c[x_]:=c[x]=(1-Mod[x, 2])*(x/2)+Mod[x, 2]*(3*x+1);c[1]=1; fpl[x_]:=Delete[FixedPointList[c, x], -1] {k=65536, ta=Table[0, {100}], u=1}; {$RecursionLimit=1000;m=0}; Do[If[Greater[Max[fpl[k*n]], k*n], Print[{k*n, n}]; ta[[u]]=k*n;u=u+1], {n, 1, 1000000}] [Code for 2^16 divisor, a(16)].
Extensions
a(17)-a(24) from Donovan Johnson, Feb 02 2011
Edited by Jon E. Schoenfield, May 18 2024
Comments