A095389 a(n) is the number of residues from reduced residue system, R, modulo 210 such that both R and R+2 are primes, i.e., both 210n+r and 210n+r+2 are primes at fixed n.
13, 7, 6, 5, 5, 4, 6, 5, 5, 6, 6, 2, 6, 2, 3, 6, 7, 3, 4, 6, 6, 4, 5, 4, 2, 3, 6, 4, 1, 4, 2, 5, 5, 3, 4, 4, 2, 2, 2, 4, 3, 2, 5, 2, 5, 2, 4, 4, 3, 5, 2, 2, 4, 2, 3, 2, 4, 4, 3, 1, 1, 4, 1, 2, 0, 6, 5, 2, 3, 4, 1, 0, 4, 1, 5, 1, 4, 3, 1, 3, 3, 3, 3, 3, 5, 7, 3, 2, 2, 0, 3, 3, 4, 2, 3, 4, 2, 4, 4, 3, 4, 2, 6, 3, 1
Offset: 0
Keywords
Examples
n=0: only 13+2=15 integers correspond to the condition: {11,17,29,41,59,71,101,107,137,149,179,191,197}, so a[0]=13; see A078859. n=11: only 2 twins were found, {2339,2341} and {2381,2383} corresponding to residue pairs {29,31} and {71,73}.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
{k =0, ta=Table[0, {100}]}; Do[{m=0};Do[s=210k+r;s1=210k+r+2; If[PrimeQ[s]&&PrimeQ[s+2], m=m+1], {r, 1, 210}];ta[[k]]=m, {k, 1, 100}];ta (* Second program: *) With[{P = Product[Prime@ i, {i, 4}]}, Function[R, Array[Count[R + P #, k_ /; Times @@ Boole@ PrimeQ@ {k, k + 2} == 1] &, 105, 0]]@ Select[Partition[Select[Range[P + 1], CoprimeQ[#, P] &], 2, 1], Differences@ # == {2} &][[All, 1]]] (* Michael De Vlieger, May 15 2017 *)
Comments